論文の概要: Realistically distributing object placements in synthetic training data
improves the performance of vision-based object detection models
- arxiv url: http://arxiv.org/abs/2305.14621v1
- Date: Wed, 24 May 2023 01:39:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-25 20:49:45.385112
- Title: Realistically distributing object placements in synthetic training data
improves the performance of vision-based object detection models
- Title(参考訳): 合成学習データにおける物体配置の現実的分布は視覚に基づく物体検出モデルの性能を向上させる
- Authors: Setareh Dabiri, Vasileios Lioutas, Berend Zwartsenberg, Yunpeng Liu,
Matthew Niedoba, Xiaoxuan Liang, Dylan Green, Justice Sefas, Jonathan Wilder
Lavington, Frank Wood, Adam Scibior
- Abstract要約: 合成データの分布を,実データの分布に可能な限り近いものにすることが重要である。
CARLAにおける3次元車両検出モデルの訓練とKITTIによる試験により,物体配置分布の改善による大幅な改善が示された。
- 参考スコア(独自算出の注目度): 14.547359434855695
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: When training object detection models on synthetic data, it is important to
make the distribution of synthetic data as close as possible to the
distribution of real data. We investigate specifically the impact of object
placement distribution, keeping all other aspects of synthetic data fixed. Our
experiment, training a 3D vehicle detection model in CARLA and testing on
KITTI, demonstrates a substantial improvement resulting from improving the
object placement distribution.
- Abstract(参考訳): 合成データ上で物体検出モデルを訓練する場合、合成データの分布を実データの分布にできるだけ近いものにすることが重要である。
対象の配置分布が与える影響を特に調査し、合成データの他の全ての側面を固定する。
CARLAにおける3次元車両検出モデルの訓練とKITTIによる試験により,物体配置分布の改善による大幅な改善が示された。
関連論文リスト
- Enhancing Object Detection Accuracy in Autonomous Vehicles Using Synthetic Data [0.8267034114134277]
機械学習モデルの性能は、トレーニングデータセットの性質とサイズに依存する。
正確で信頼性の高い機械学習モデルを構築するためには、高品質、多様性、関連性、代表的トレーニングデータが不可欠である。
十分に設計された合成データは、機械学習アルゴリズムの性能を向上させることができると仮定されている。
論文 参考訳(メタデータ) (2024-11-23T16:38:02Z) - Study of Dropout in PointPillars with 3D Object Detection [0.0]
ディープラーニング技術を活用してLiDARデータを解釈する。
本研究では,ポイントピラーモデルの性能を様々なドロップアウト率で向上させる手法を提案する。
論文 参考訳(メタデータ) (2024-09-01T09:30:54Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
本研究では,実世界のパターンを持つ多様な合成シーンを生成可能なベイズネットワークを提案する。
一連の実験は、既存の最先端の事前学習手法に比べて、我々の手法が一貫した優位性を示す。
論文 参考訳(メタデータ) (2024-06-17T07:43:53Z) - Improving Object Detector Training on Synthetic Data by Starting With a Strong Baseline Methodology [0.14980193397844666]
本稿では,合成データを用いた学習における事前学習対象検出器の性能向上手法を提案する。
提案手法は,実画像の事前学習から得られた有用な特徴を忘れずに,合成データから有能な情報を抽出することに焦点を当てる。
論文 参考訳(メタデータ) (2024-05-30T08:31:01Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - 3D Adversarial Augmentations for Robust Out-of-Domain Predictions [115.74319739738571]
ドメイン外データへの一般化の改善に注力する。
対象を逆向きに変形させるベクトルの集合を学習する。
本研究では,学習したサンプル非依存ベクトルをモデルトレーニング時に利用可能なオブジェクトに適用することにより,対数拡大を行う。
論文 参考訳(メタデータ) (2023-08-29T17:58:55Z) - Exploring the Effectiveness of Dataset Synthesis: An application of
Apple Detection in Orchards [68.95806641664713]
本研究では,リンゴ樹の合成データセットを生成するための安定拡散2.1-baseの有用性について検討する。
我々は、現実世界のリンゴ検出データセットでリンゴを予測するために、YOLOv5mオブジェクト検出モデルを訓練する。
その結果、実世界の画像でトレーニングされたベースラインモデルと比較して、生成データでトレーニングされたモデルはわずかに性能が劣っていることがわかった。
論文 参考訳(メタデータ) (2023-06-20T09:46:01Z) - The Big Data Myth: Using Diffusion Models for Dataset Generation to
Train Deep Detection Models [0.15469452301122172]
本研究では, 微調整型安定拡散モデルによる合成データセット生成のための枠組みを提案する。
本研究の結果から, 合成データを用いた物体検出モデルは, ベースラインモデルと同じような性能を示すことが明らかとなった。
論文 参考訳(メタデータ) (2023-06-16T10:48:52Z) - A New Benchmark: On the Utility of Synthetic Data with Blender for Bare
Supervised Learning and Downstream Domain Adaptation [42.2398858786125]
コンピュータビジョンにおけるディープラーニングは、大規模ラベル付きトレーニングデータの価格で大きな成功を収めた。
制御不能なデータ収集プロセスは、望ましくない重複が存在する可能性のある非IIDトレーニングおよびテストデータを生成する。
これを回避するために、ドメインランダム化による3Dレンダリングによる合成データを生成する方法がある。
論文 参考訳(メタデータ) (2023-03-16T09:03:52Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
本稿ではCAFE(Aligning features)によるCondenseデータセットの新しいスキームを提案する。
このアプローチの核心は、さまざまなスケールにわたる実データと合成データから機能を整合させる効果的な戦略です。
提案したCAFEを様々なデータセットで検証し,概ね最先端技術であることを示す。
論文 参考訳(メタデータ) (2022-03-03T05:58:49Z) - Negative Data Augmentation [127.28042046152954]
負のデータ拡張サンプルは、データ分散のサポートに関する情報を提供することを示す。
我々は、NDAを識別器の合成データの追加源として利用する新しいGAN訓練目標を提案する。
実験により,本手法で訓練したモデルでは,異常検出能力の向上とともに条件付き・条件付き画像生成の改善を実現している。
論文 参考訳(メタデータ) (2021-02-09T20:28:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。