論文の概要: Scientific Opinion Summarization: Paper Meta-review Generation Dataset, Methods, and Evaluation
- arxiv url: http://arxiv.org/abs/2305.14647v3
- Date: Sun, 16 Jun 2024 03:44:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-19 13:00:15.008515
- Title: Scientific Opinion Summarization: Paper Meta-review Generation Dataset, Methods, and Evaluation
- Title(参考訳): 科学的意見要約:論文メタレビュー生成データセット,方法,評価
- Authors: Qi Zeng, Mankeerat Sidhu, Ansel Blume, Hou Pong Chan, Lu Wang, Heng Ji,
- Abstract要約: 本稿では,論文レビューをメタレビューに合成する,科学的意見要約の課題を提案する。
ORSUMデータセットは、47のカンファレンスから15,062のメタレビューと57,536の論文レビューをカバーしている。
実験の結果,(1)人間による要約は,議論の深みや特定の領域に対するコンセンサスや論争の特定など,必要な基準をすべて満たしていないこと,(2)タスクの分解と反復的自己調整の組み合わせは,意見の強化に強い可能性を示唆している。
- 参考スコア(独自算出の注目度): 55.00687185394986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Opinions in scientific research papers can be divergent, leading to controversies among reviewers. However, most existing datasets for opinion summarization are centered around product reviews and assume that the analyzed opinions are non-controversial, failing to account for the variability seen in other contexts such as academic papers, political debates, or social media discussions. To address this gap, we propose the task of scientific opinion summarization, where research paper reviews are synthesized into meta-reviews. To facilitate this task, we introduce the ORSUM dataset covering 15,062 paper meta-reviews and 57,536 paper reviews from 47 conferences. Furthermore, we propose the Checklist-guided Iterative Introspection approach, which breaks down scientific opinion summarization into several stages, iteratively refining the summary under the guidance of questions from a checklist. Our experiments show that (1) human-written summaries do not always satisfy all necessary criteria such as depth of discussion, and identifying consensus and controversy for the specific domain, and (2) the combination of task decomposition and iterative self-refinement shows strong potential for enhancing the opinions and can be applied to other complex text generation using black-box LLMs.
- Abstract(参考訳): 科学的研究論文の意見は分かれており、レビュアーの間での議論に繋がる。
しかし、既存の意見要約のためのデータセットのほとんどは製品レビューを中心におり、分析された意見は非論争的であり、学術論文や政治討論、ソーシャルメディアの議論など他の文脈で見られる多様性を考慮していないと仮定している。
このギャップに対処するために,研究論文レビューをメタレビューに合成する,科学的意見要約の課題を提案する。
この作業を容易にするため,47件の会議から15,062件のメタレビューと57,536件の論文レビューを含むORSUMデータセットを紹介した。
さらに,チェックリスト誘導反復検査手法を提案し,科学的意見の要約をいくつかの段階に分割し,チェックリストからの質問の指導の下で要約を反復的に精査する。
実験の結果,(1)人間による要約は,議論の深さや特定の領域に対するコンセンサスや論争の特定など,必要な基準をすべて満たしていないこと,(2)タスクの分解と反復的自己表現の組み合わせは,意見の強化に強い可能性を示し,ブラックボックスLLMを用いた複雑なテキスト生成にも適用可能であることがわかった。
関連論文リスト
- GLIMPSE: Pragmatically Informative Multi-Document Summarization for Scholarly Reviews [25.291384842659397]
本稿では,学術レビューの簡潔かつ包括的概要を提供するための要約手法であるsysを紹介する。
従来のコンセンサスに基づく手法とは異なり、sysは共通の意見とユニークな意見の両方をレビューから抽出する。
論文 参考訳(メタデータ) (2024-06-11T15:27:01Z) - CASIMIR: A Corpus of Scientific Articles enhanced with Multiple Author-Integrated Revisions [7.503795054002406]
本稿では,学術論文の執筆過程の改訂段階について,原文資料を提案する。
この新しいデータセットはCASIMIRと呼ばれ、OpenReviewの15,646の科学論文の改訂版とピアレビューを含んでいる。
論文 参考訳(メタデータ) (2024-03-01T03:07:32Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [58.6354685593418]
本稿では, レビューを評価するために, 記事レベル, フィールド正規化, 大規模言語モデルを用いた書誌指標を提案する。
新たに登場したAI生成の文献レビューも評価されている。
この研究は、文学レビューの現在の課題についての洞察を与え、彼らの開発に向けた今後の方向性を思い起こさせる。
論文 参考訳(メタデータ) (2024-02-20T11:28:50Z) - Incremental Extractive Opinion Summarization Using Cover Trees [81.59625423421355]
オンラインマーケットプレースでは、ユーザレビューは時間とともに蓄積され、意見要約を定期的に更新する必要がある。
本研究では,漸進的な環境下での抽出的意見要約の課題について検討する。
本稿では,CentroidRankの要約をインクリメンタルな設定で正確に計算するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-16T02:00:17Z) - When Reviewers Lock Horn: Finding Disagreement in Scientific Peer
Reviews [24.875901048855077]
本稿では,ある記事のレビュアー間での矛盾を自動的に識別する新しいタスクを紹介する。
我々の知識を最大限に活用するために、ピアレビュアー間での意見の不一致を自動的に識別する最初の試みを行う。
論文 参考訳(メタデータ) (2023-10-28T11:57:51Z) - Submission-Aware Reviewer Profiling for Reviewer Recommender System [26.382772998002523]
本稿では,潜在的レビュアーが出版する各要約から,研究対象のトピックと,そのトピックを研究対象とする明示的な文脈を学習する手法を提案する。
実験の結果,既存手法と比較して精度が向上した。
この新しいアプローチは、過去2年でトップレベルのカンファレンスで成功している。
論文 参考訳(メタデータ) (2022-11-08T12:18:02Z) - Learning Opinion Summarizers by Selecting Informative Reviews [81.47506952645564]
31,000以上の製品のユーザレビューと組み合わせた大規模な要約データセットを収集し、教師付きトレーニングを可能にします。
多くのレビューの内容は、人間が書いた要約には反映されず、したがってランダムなレビューサブセットで訓練された要約者は幻覚する。
我々は、これらのサブセットで表現された意見を要約し、レビューの情報的サブセットを選択するための共同学習としてタスクを定式化する。
論文 参考訳(メタデータ) (2021-09-09T15:01:43Z) - ConvoSumm: Conversation Summarization Benchmark and Improved Abstractive
Summarization with Argument Mining [61.82562838486632]
我々は、さまざまなオンライン会話形式のニュースコメント、ディスカッションフォーラム、コミュニティ質問応答フォーラム、電子メールスレッドに関する4つの新しいデータセットをクラウドソースする。
我々は、データセットの最先端モデルをベンチマークし、データに関連する特徴を分析します。
論文 参考訳(メタデータ) (2021-06-01T22:17:13Z) - Can We Automate Scientific Reviewing? [89.50052670307434]
我々は、最先端自然言語処理(NLP)モデルを用いて、科学論文の第一パスピアレビューを生成する可能性について論じる。
我々は、機械学習領域で論文のデータセットを収集し、各レビューでカバーされているさまざまなコンテンツに注釈を付け、レビューを生成するために論文を取り込み、ターゲットの要約モデルを訓練する。
総合的な実験結果から、システム生成レビューは、人間によるレビューよりも、論文の多くの側面に触れる傾向にあることが示された。
論文 参考訳(メタデータ) (2021-01-30T07:16:53Z) - Aspect-based Sentiment Analysis of Scientific Reviews [12.472629584751509]
本研究は,受理論文と受理論文ではアスペクトベース感情の分布が著しく異なることを示す。
第2の目的として、論文を閲覧するレビュアーの間での意見の不一致の程度を定量化する。
また, 審査員と議長との意見の不一致の程度について検討し, 審査員間の意見の不一致が議長との意見の不一致と関係があることを見出した。
論文 参考訳(メタデータ) (2020-06-05T07:06:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。