論文の概要: CASIMIR: A Corpus of Scientific Articles enhanced with Multiple Author-Integrated Revisions
- arxiv url: http://arxiv.org/abs/2403.00241v2
- Date: Tue, 19 Mar 2024 08:34:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 23:01:00.194524
- Title: CASIMIR: A Corpus of Scientific Articles enhanced with Multiple Author-Integrated Revisions
- Title(参考訳): CASIMIR:複数の著者による改訂で強化された学術論文のコーパス
- Authors: Leane Jourdan, Florian Boudin, Nicolas Hernandez, Richard Dufour,
- Abstract要約: 本稿では,学術論文の執筆過程の改訂段階について,原文資料を提案する。
この新しいデータセットはCASIMIRと呼ばれ、OpenReviewの15,646の科学論文の改訂版とピアレビューを含んでいる。
- 参考スコア(独自算出の注目度): 7.503795054002406
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Writing a scientific article is a challenging task as it is a highly codified and specific genre, consequently proficiency in written communication is essential for effectively conveying research findings and ideas. In this article, we propose an original textual resource on the revision step of the writing process of scientific articles. This new dataset, called CASIMIR, contains the multiple revised versions of 15,646 scientific articles from OpenReview, along with their peer reviews. Pairs of consecutive versions of an article are aligned at sentence-level while keeping paragraph location information as metadata for supporting future revision studies at the discourse level. Each pair of revised sentences is enriched with automatically extracted edits and associated revision intention. To assess the initial quality on the dataset, we conducted a qualitative study of several state-of-the-art text revision approaches and compared various evaluation metrics. Our experiments led us to question the relevance of the current evaluation methods for the text revision task.
- Abstract(参考訳): 科学的論文を書くことは、高度に体系化された特定のジャンルであるため、研究成果やアイデアを効果的に伝達するためには、文章によるコミュニケーションの熟練が不可欠である。
本稿では,学術論文の執筆過程の改訂段階における原文資源を提案する。
この新しいデータセットはCASIMIRと呼ばれ、OpenReviewの15,646の科学論文の改訂版とピアレビューを含んでいる。
談話レベルでの今後の改訂研究を支援するメタデータとして、段落位置情報を保持しつつ、記事の連続バージョンを文レベルで整列する。
各改訂文は、自動的に抽出された編集と関連する修正意図で濃縮される。
データセットの初期品質を評価するために,いくつかの最先端テキストリビジョン手法の質的研究を行い,様々な評価指標を比較した。
実験の結果,テキスト改訂作業における現在の評価手法の妥当性が疑問視された。
関連論文リスト
- Re3: A Holistic Framework and Dataset for Modeling Collaborative Document Revision [62.12545440385489]
共同文書リビジョンを共同で分析するためのフレームワークであるRe3を紹介する。
本稿では,Re3-Sciについて紹介する。Re3-Sciは,その行動と意図に応じて手動でラベル付けされた科学的論文の大規模なコーパスである。
我々は,新しいデータを用いて,学術領域における共同文書改訂に関する実証的研究を行った。
論文 参考訳(メタデータ) (2024-05-31T21:19:09Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [58.6354685593418]
本稿では, レビューを評価するために, 記事レベル, フィールド正規化, 大規模言語モデルを用いた書誌指標を提案する。
新たに登場したAI生成の文献レビューも評価されている。
この研究は、文学レビューの現在の課題についての洞察を与え、彼らの開発に向けた今後の方向性を思い起こさせる。
論文 参考訳(メタデータ) (2024-02-20T11:28:50Z) - ARIES: A Corpus of Scientific Paper Edits Made in Response to Peer Reviews [36.76200047558003]
我々は、ピアフィードバックに基づいて科学論文を自動修正するタスクを導入する。
著者が作成した特定の論文にレビュアーコメントをリンクするラベルを提供する。
アートの状態をカバーした10のモデルを用いた実験では、どの編集がコメントに対応するかを特定するのに苦労していることがわかった。
論文 参考訳(メタデータ) (2023-06-21T22:00:03Z) - To Revise or Not to Revise: Learning to Detect Improvable Claims for
Argumentative Writing Support [20.905660642919052]
特定の修正が必要な議論的クレームを特定するための主な課題について検討する。
本稿では,リビジョン距離に基づく新しいサンプリング戦略を提案する。
文脈情報とドメイン知識を用いることで、予測結果をさらに改善できることを示す。
論文 参考訳(メタデータ) (2023-05-26T10:19:54Z) - Scientific Opinion Summarization: Paper Meta-review Generation Dataset, Methods, and Evaluation [55.00687185394986]
本稿では,論文レビューをメタレビューに合成する,科学的意見要約の課題を提案する。
ORSUMデータセットは、47のカンファレンスから15,062のメタレビューと57,536の論文レビューをカバーしている。
実験の結果,(1)人間による要約は,議論の深みや特定の領域に対するコンセンサスや論争の特定など,必要な基準をすべて満たしていないこと,(2)タスクの分解と反復的自己調整の組み合わせは,意見の強化に強い可能性を示唆している。
論文 参考訳(メタデータ) (2023-05-24T02:33:35Z) - Artificial intelligence technologies to support research assessment: A
review [10.203602318836444]
この文献レビューは、記事のテキストから、より高いインパクトやより高い品質の研究に関連する指標を特定する。
論文やカンファレンス論文の引用数や品質スコアを予測するために機械学習技術を使用した研究が含まれている。
論文 参考訳(メタデータ) (2022-12-11T06:58:39Z) - EditEval: An Instruction-Based Benchmark for Text Improvements [73.5918084416016]
編集機能の自動評価のためのインストラクションベース、ベンチマーク、評価スイートであるEditEvalを提示する。
InstructGPTとPEERが最良であることを示す事前学習モデルをいくつか評価するが,ほとんどのベースラインは教師付きSOTA以下である。
我々の分析は、タスクの編集によく使われるメトリクスが必ずしも相関しているとは限らないことを示し、最高の性能を持つプロンプトに対する最適化は、必ずしも異なるモデルに対して強い堅牢性を持つとは限らないことを示唆している。
論文 参考訳(メタデータ) (2022-09-27T12:26:05Z) - Towards Automated Document Revision: Grammatical Error Correction,
Fluency Edits, and Beyond [46.130399041820716]
ACLアンソロジーから採取した学術論文をプロの編集者が改訂する文書改訂コーパスTETRAを導入する。
TETRAの独特性を既存の文書修正コーパスと比較し、微妙な違いであっても、修正後の文書の品質を識別できることを実証する。
論文 参考訳(メタデータ) (2022-05-23T17:37:20Z) - Revise and Resubmit: An Intertextual Model of Text-based Collaboration
in Peer Review [52.359007622096684]
ピアレビューは、ほとんどの科学分野における出版プロセスの重要な要素である。
既存のNLP研究は個々のテキストの分析に重点を置いている。
編集補助は、しばしばテキストのペア間の相互作用をモデル化する必要がある。
論文 参考訳(メタデータ) (2022-04-22T16:39:38Z) - Hierarchical Bi-Directional Self-Attention Networks for Paper Review
Rating Recommendation [81.55533657694016]
本稿では,階層型双方向自己注意ネットワークフレームワーク(HabNet)を提案する。
具体的には、文エンコーダ(レベル1)、レビュー内エンコーダ(レベル2)、レビュー間エンコーダ(レベル3)の3つのレベルで、論文レビューの階層構造を利用する。
我々は、最終的な受理決定を行う上で有用な予測者を特定することができ、また、数値的なレビュー評価とレビュアーが伝えるテキストの感情の不整合を発見するのに役立てることができる。
論文 参考訳(メタデータ) (2020-11-02T08:07:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。