論文の概要: Generative Modeling through the Semi-dual Formulation of Unbalanced
Optimal Transport
- arxiv url: http://arxiv.org/abs/2305.14777v3
- Date: Tue, 6 Feb 2024 09:41:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-07 20:50:39.322708
- Title: Generative Modeling through the Semi-dual Formulation of Unbalanced
Optimal Transport
- Title(参考訳): 不均衡最適輸送の半二重定式化による生成モデル
- Authors: Jaemoo Choi, Jaewoong Choi, Myungjoo Kang
- Abstract要約: 非平衡最適輸送(UOT)の半二重定式化に基づく新しい生成モデルを提案する。
OTとは異なり、UOTは分散マッチングの厳しい制約を緩和する。このアプローチは、外れ値に対する堅牢性、トレーニング中の安定性、より高速な収束を提供する。
CIFAR-10ではFIDスコアが2.97、CelebA-HQ-256では6.36である。
- 参考スコア(独自算出の注目度): 9.980822222343921
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimal Transport (OT) problem investigates a transport map that bridges two
distributions while minimizing a given cost function. In this regard, OT
between tractable prior distribution and data has been utilized for generative
modeling tasks. However, OT-based methods are susceptible to outliers and face
optimization challenges during training. In this paper, we propose a novel
generative model based on the semi-dual formulation of Unbalanced Optimal
Transport (UOT). Unlike OT, UOT relaxes the hard constraint on distribution
matching. This approach provides better robustness against outliers, stability
during training, and faster convergence. We validate these properties
empirically through experiments. Moreover, we study the theoretical upper-bound
of divergence between distributions in UOT. Our model outperforms existing
OT-based generative models, achieving FID scores of 2.97 on CIFAR-10 and 6.36
on CelebA-HQ-256. The code is available at
\url{https://github.com/Jae-Moo/UOTM}.
- Abstract(参考訳): 最適輸送(OT)問題は、与えられたコスト関数を最小化しながら2つの分布をブリッジする輸送マップを調べる。
この点において、扱いやすい事前分布とデータの間のotは生成的モデリングタスクに利用されてきた。
しかし、OTベースの手法は、トレーニング中にアウトレーヤや最適化の課題に直面しやすい。
本稿では,不均衡最適輸送(UOT)の半二重定式化に基づく新しい生成モデルを提案する。
OTとは異なり、UOTは分布マッチングの厳しい制約を緩和する。
このアプローチは、外れ値に対する堅牢性、トレーニング中の安定性、より高速な収束を提供する。
これらの特性を実験的に検証する。
さらに,UOTにおける分布間の分岐の理論的上界について検討した。
CIFAR-10ではFIDスコアが2.97、CelebA-HQ-256では6.36である。
コードは \url{https://github.com/jae-moo/uotm} で入手できる。
関連論文リスト
- Double-Bounded Optimal Transport for Advanced Clustering and
Classification [58.237576976486544]
本稿では,2つの境界内での目標分布の制限を前提としたDB-OT(Douubly bounded Optimal Transport)を提案する。
提案手法は,テスト段階における改良された推論方式により,良好な結果が得られることを示す。
論文 参考訳(メタデータ) (2024-01-21T07:43:01Z) - Optimal Transport-Guided Conditional Score-Based Diffusion Models [63.14903268958398]
条件付きスコアベース拡散モデル(SBDM)は、条件付きデータを条件としてターゲットデータの条件付き生成を行い、画像翻訳において大きな成功を収めた。
本稿では, 最適輸送誘導条件付きスコアベース拡散モデル(OTCS)を提案する。
論文 参考訳(メタデータ) (2023-11-02T13:28:44Z) - Analyzing and Improving Optimal-Transport-based Adversarial Networks [9.980822222343921]
最適輸送(OT)問題は、与えられたコスト関数を最小化しつつ、2つの分布をブリッジする輸送計画を見つけることを目的としている。
OT理論は生成モデリングに広く利用されている。
提案手法はCIFAR-10では2.51点,CelebA-HQ-256では5.99点のFIDスコアを得た。
論文 参考訳(メタデータ) (2023-10-04T06:52:03Z) - Building the Bridge of Schr\"odinger: A Continuous Entropic Optimal
Transport Benchmark [96.06787302688595]
提案手法は, 基本真理 OT 解が構成によって知られている確率分布のペアを作成する方法である。
これらのベンチマークペアを使用して、既存のニューラルネットワーク EOT/SB ソルバが実際に EOT ソリューションをどれだけよく計算しているかをテストする。
論文 参考訳(メタデータ) (2023-06-16T20:03:36Z) - Turning Normalizing Flows into Monge Maps with Geodesic Gaussian
Preserving Flows [0.0]
本稿では,任意の訓練済みNFを最終密度を変化させることなく,よりOT効率の高いバージョンに変換する手法を提案する。
我々は、ソースと最終密度の間のOTコストを最小化するソース(ガウス)分布の再配置を学習する。
提案手法は, モデル性能に影響を与えることなく, 既存のモデルのOTコストを低減し, 滑らかな流れをもたらす。
論文 参考訳(メタデータ) (2022-09-22T09:16:42Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Convex Smoothed Autoencoder-Optimal Transport model [0.0]
我々は,観測データに類似したサンプルを生成することができ,モード崩壊やモード混合のない新しい生成モデルを開発した。
我々のモデルは、最近提案されたオートエンコーダ-最適輸送(AE-OT)モデルにインスパイアされ、AE-OTモデル自体が直面している問題に対処して改善を試みる。
論文 参考訳(メタデータ) (2021-01-14T15:55:20Z) - Comparing Probability Distributions with Conditional Transport [63.11403041984197]
新しい発散として条件輸送(CT)を提案し、償却されたCT(ACT)コストと近似します。
ACTは条件付き輸送計画の計算を補正し、計算が容易な非バイアスのサンプル勾配を持つ。
さまざまなベンチマークデータセットのジェネレーティブモデリングでは、既存のジェネレーティブ敵対ネットワークのデフォルトの統計距離をACTに置き換えることで、一貫してパフォーマンスを向上させることが示されています。
論文 参考訳(メタデータ) (2020-12-28T05:14:22Z) - Robust Optimal Transport with Applications in Generative Modeling and
Domain Adaptation [120.69747175899421]
ワッサーシュタインのような最適輸送(OT)距離は、GANやドメイン適応のようないくつかの領域で使用されている。
本稿では,現代のディープラーニングアプリケーションに適用可能な,ロバストなOT最適化の計算効率のよい2つの形式を提案する。
提案手法では, ノイズの多いデータセット上で, 外部分布で劣化したGANモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2020-10-12T17:13:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。