論文の概要: A Human-in-the-Loop Approach for Information Extraction from Privacy
Policies under Data Scarcity
- arxiv url: http://arxiv.org/abs/2305.15006v2
- Date: Wed, 31 May 2023 09:58:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-01 20:36:53.095649
- Title: A Human-in-the-Loop Approach for Information Extraction from Privacy
Policies under Data Scarcity
- Title(参考訳): プライバシポリシからの情報抽出への人間によるアプローチ
- Authors: Michael Gebauer, Faraz Maschhur, Nicola Leschke, Elias Gr\"unewald,
Frank Pallas
- Abstract要約: プライバシポリシアノテーションに対するHuman-in-the-Loopアプローチのプロトタイプシステムを提案する。
本稿では,プライバシポリシアノテーションの領域で一般的なデータ不足の制約に特化して,MLに基づく提案システムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine-readable representations of privacy policies are door openers for a
broad variety of novel privacy-enhancing and, in particular,
transparency-enhancing technologies (TETs). In order to generate such
representations, transparency information needs to be extracted from written
privacy policies. However, respective manual annotation and extraction
processes are laborious and require expert knowledge. Approaches for fully
automated annotation, in turn, have so far not succeeded due to overly high
error rates in the specific domain of privacy policies. In the end, a lack of
properly annotated privacy policies and respective machine-readable
representations persists and enduringly hinders the development and
establishment of novel technical approaches fostering policy perception and
data subject informedness.
In this work, we present a prototype system for a `Human-in-the-Loop'
approach to privacy policy annotation that integrates ML-generated suggestions
and ultimately human annotation decisions. We propose an ML-based suggestion
system specifically tailored to the constraint of data scarcity prevalent in
the domain of privacy policy annotation. On this basis, we provide meaningful
predictions to users thereby streamlining the annotation process. Additionally,
we also evaluate our approach through a prototypical implementation to show
that our ML-based extraction approach provides superior performance over other
recently used extraction models for legal documents.
- Abstract(参考訳): プライバシポリシの機械可読表現は、幅広い新しいプライバシ向上技術、特に透明性向上技術(tets)の扉を開くものである。
このような表現を生成するには、文書化されたプライバシーポリシーから透明性情報を抽出する必要がある。
しかし、それぞれの手動アノテーションと抽出プロセスは手間がかかり、専門家の知識が必要となる。
完全な自動アノテーションに対するアプローチは、プライバシーポリシーの特定の領域における過度に高いエラー率のために、これまで成功していない。
結局、適切な注釈付きプライバシーポリシーの欠如と、各機械可読表現の欠如は、政策認識とデータ対象のインフォームドネスを促進する新しい技術アプローチの開発と確立を永続的に妨げている。
本研究では,ML生成提案と究極的には人間のアノテーション決定を統合したプライバシポリシアノテーションに対するHuman-in-the-Loopアプローチのプロトタイプシステムを提案する。
本稿では,プライバシポリシアノテーションの領域で一般的なデータ不足の制約に特化して,MLに基づく提案システムを提案する。
そこで本研究では,アノテーションプロセスの合理化を図り,ユーザに対して意味のある予測を行う。
さらに,本手法は,本手法が他の法律文書の抽出モデルよりも優れた性能を提供することを示すために,原型的実装を通じて評価する。
関連論文リスト
- Masked Differential Privacy [64.32494202656801]
本稿では,差分プライバシーを適用した機密領域を制御できる「マスク型差分プライバシー(DP)」という効果的なアプローチを提案する。
提案手法はデータに基づいて選択的に動作し,DPアプリケーションや差分プライバシーをデータサンプル内の他のプライバシー技術と組み合わせることなく,非感性時間領域を定義できる。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - Collection, usage and privacy of mobility data in the enterprise and public administrations [55.2480439325792]
個人のプライバシーを守るためには、匿名化などのセキュリティ対策が必要である。
本研究では,現場における実践の洞察を得るために,専門家によるインタビューを行った。
我々は、一般的には最先端の差分プライバシー基準に準拠しない、使用中のプライバシー強化手法を調査した。
論文 参考訳(メタデータ) (2024-07-04T08:29:27Z) - State-of-the-Art Approaches to Enhancing Privacy Preservation of Machine Learning Datasets: A Survey [0.0]
本稿では、機械学習(ML)の進化する展望と、その様々な分野における大きな影響について考察する。
プライバシ保護機械学習(PPML)の新たな分野に焦点を当てている。
MLアプリケーションは、通信、金融技術、監視といった産業にとってますます不可欠なものになりつつあるため、プライバシー上の懸念が高まる。
論文 参考訳(メタデータ) (2024-02-25T17:31:06Z) - Privacy-Preserving Language Model Inference with Instance Obfuscation [33.86459812694288]
言語モデル・アズ・ア・サービス(LM)は、開発者や研究者が事前訓練された言語モデルを使用して推論を行うための便利なアクセスを提供する。
入力データとプライベート情報を含む推論結果は、サービスコール中にプレーンテキストとして公開され、プライバシー上の問題が発生する。
本稿では,自然言語理解タスクにおける決定プライバシ問題に対処することに焦点を当てた,インスタンス・オブフルスケート推論(IOI)手法を提案する。
論文 参考訳(メタデータ) (2024-02-13T05:36:54Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Privacy-Preserving Matrix Factorization for Recommendation Systems using
Gaussian Mechanism [2.84279467589473]
本稿では,差分プライバシーフレームワークと行列因数分解に基づくプライバシ保護レコメンデーションシステムを提案する。
差分プライバシーは、プライバシを保存する機械学習アルゴリズムを設計するための強力で堅牢な数学的フレームワークであるため、敵が機密性の高いユーザー情報を抽出するのを防ぐことができる。
論文 参考訳(メタデータ) (2023-04-11T13:50:39Z) - How to keep text private? A systematic review of deep learning methods
for privacy-preserving natural language processing [0.38073142980732994]
記事は2016年から2020年にかけて発行されたプライバシー保護NLPに関する60以上の方法を体系的にレビューしている。
本稿では,既存の手法を3つのカテゴリに分類する新しい分類法を提案する。
我々は、データトレーサビリティ、オーバーヘッドデータセットサイズ、埋め込みにおける人間のバイアスの頻度に関するプライバシー保護NLPのオープンな課題について論じる。
論文 参考訳(メタデータ) (2022-05-20T11:29:44Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
フェデレートラーニング(FL)により、データ所有者はデータを共有することなく、データガバナンスを維持し、モデルトレーニングをローカルで行うことができる。
FLと関連する技術は、しばしばプライバシー保護と表現される。
この用語が適切でない理由を説明し、プライバシの形式的定義を念頭に設計されていないプロトコルに対する過度な信頼に関連するリスクを概説する。
論文 参考訳(メタデータ) (2021-12-21T08:44:05Z) - Privacy-Constrained Policies via Mutual Information Regularized Policy Gradients [54.98496284653234]
報酬を最大化しつつ、行動を通じて特定の機密状態変数の開示を最小限に抑えながら、報酬を最大化する政策を訓練する課題を考察する。
本稿では, 感性状態と行動の相互情報に基づく正則化器を導入することで, この問題を解決する。
プライバシ制約のあるポリシーを最適化するためのモデルベース推定器を開発した。
論文 参考訳(メタデータ) (2020-12-30T03:22:35Z) - Beyond The Text: Analysis of Privacy Statements through Syntactic and
Semantic Role Labeling [12.74252812104216]
本稿では,プライバシポリシからコンテキスト整合性(Contextual Integrity)のレンズを通じて,プライバシパラメータを抽出する新たなタスクを定式化する。
最近提案された質問応答に基づくソリューションを含む従来のNLPタスクは、プライバシパラメータ抽出の問題に対処するには不十分であることを示す。
論文 参考訳(メタデータ) (2020-10-01T20:48:37Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
エピソード強化学習(RL)のためのプライバシー保護探索ポリシーを設計する。
まず、共同微分プライバシー(JDP)の概念を用いた有意義なプライバシー定式化を提供する。
そこで我々は,強いPACと後悔境界を同時に達成し,JDP保証を享受する,プライベートな楽観主義に基づく学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-09-18T20:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。