論文の概要: ASPER: Answer Set Programming Enhanced Neural Network Models for Joint
Entity-Relation Extraction
- arxiv url: http://arxiv.org/abs/2305.15374v1
- Date: Wed, 24 May 2023 17:32:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-25 13:50:46.416520
- Title: ASPER: Answer Set Programming Enhanced Neural Network Models for Joint
Entity-Relation Extraction
- Title(参考訳): asper: 統合エンティティ関係抽出のための解集合プログラミング拡張ニューラルネットワークモデル
- Authors: Trung Hoang Le, Huiping Cao, Tran Cao Son
- Abstract要約: 本稿では ASP-enhanced Entity-Relation extract (ASPER) という新しいアプローチを提案する。
ASPERは、データとドメインの知識の両方から学習することで、エンティティと関係を共同で認識する。
特に、ASPERはニューラルネットワークモデルの学習プロセスにおいて、事実知識(ASPで事実として表現される)と派生知識(ASPで規則として表現される)を活用する。
- 参考スコア(独自算出の注目度): 11.049915720093242
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A plethora of approaches have been proposed for joint entity-relation (ER)
extraction. Most of these methods largely depend on a large amount of manually
annotated training data. However, manual data annotation is time consuming,
labor intensive, and error prone. Human beings learn using both data (through
induction) and knowledge (through deduction). Answer Set Programming (ASP) has
been a widely utilized approach for knowledge representation and reasoning that
is elaboration tolerant and adept at reasoning with incomplete information.
This paper proposes a new approach, ASP-enhanced Entity-Relation extraction
(ASPER), to jointly recognize entities and relations by learning from both data
and domain knowledge. In particular, ASPER takes advantage of the factual
knowledge (represented as facts in ASP) and derived knowledge (represented as
rules in ASP) in the learning process of neural network models. We have
conducted experiments on two real datasets and compare our method with three
baselines. The results show that our ASPER model consistently outperforms the
baselines.
- Abstract(参考訳): ジョイント・エンティティ・リレーション(ER)抽出のための多くのアプローチが提案されている。
これらの手法のほとんどは、手作業による大量のトレーニングデータに依存している。
しかし、手動のデータアノテーションは時間がかかり、労力がかかり、エラーが発生しやすい。
人間は(推論を通じて)データと知識の両方を使って学習する。
Answer Set Programming (ASP) は知識表現や推論において広く利用されている手法であり、不完全な情報による推論には耐え難い。
本稿では、データとドメイン知識の両方から学習することで、エンティティと関係を協調的に認識する新しいアプローチである、ASP-enhanced Entity-Relation extract (ASPER)を提案する。
特に、ASPERはニューラルネットワークモデルの学習プロセスにおいて、事実知識(ASPで事実として表現される)と派生知識(ASPで規則として表現される)を活用する。
我々は,2つの実データに対して実験を行い,本手法を3つのベースラインと比較した。
その結果、ASPERモデルはベースラインを一貫して上回ります。
関連論文リスト
- KBAlign: Efficient Self Adaptation on Specific Knowledge Bases [75.78948575957081]
大規模言語モデル(LLM)は通常、知識材料を瞬時に活用するために、検索強化世代に依存している。
本稿では,知識ベースを含む下流タスクへの効率的な適応を目的としたKBAlignを提案する。
提案手法は,Q&Aペアやリビジョン提案などの自己注釈付きデータを用いて反復学習を行い,モデルが知識内容を効率的に把握できるようにする。
論文 参考訳(メタデータ) (2024-11-22T08:21:03Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
機械学習の最近の進歩は、情報抽出の分野に大きな影響を与えている。
タスクをエンティティ中心にすることで、さまざまなメトリクスの使用を可能にします。
我々は、Structured Entity extractを導入し、Adroximate Entity Set OverlaPメトリックを提案し、この分野にコントリビュートします。
論文 参考訳(メタデータ) (2024-02-06T22:15:09Z) - Relational Deep Learning: Graph Representation Learning on Relational
Databases [69.7008152388055]
複数のテーブルにまたがって配置されたデータを学ぶために、エンドツーエンドの表現アプローチを導入する。
メッセージパッシンググラフニューラルネットワークは、自動的にグラフを学習して、すべてのデータ入力を活用する表現を抽出する。
論文 参考訳(メタデータ) (2023-12-07T18:51:41Z) - Representing Knowledge by Spans: A Knowledge-Enhanced Model for
Information Extraction [7.077412533545456]
本稿では,エンティティとリレーションの両方の表現を同時に学習する事前学習モデルを提案する。
スパンをスパンモジュールで効率的に符号化することで、私たちのモデルはエンティティとそれらの関係を表現できますが、既存のモデルよりもパラメータが少なくなります。
論文 参考訳(メタデータ) (2022-08-20T07:32:25Z) - REKnow: Enhanced Knowledge for Joint Entity and Relation Extraction [30.829001748700637]
関係抽出はテキストからすべての隠れた関係事実を抽出することを目的とした課題である。
様々な関係抽出設定下でうまく機能する統一されたフレームワークは存在しない。
これら2つの問題を緩和する知識強化型生成モデルを提案する。
本モデルは,WebNLG,NYT10,TACREDなど,複数のベンチマークや設定において優れた性能を実現する。
論文 参考訳(メタデータ) (2022-06-10T13:59:38Z) - Modeling Multi-Granularity Hierarchical Features for Relation Extraction [26.852869800344813]
本稿では,原文のみに基づく多粒度特徴抽出手法を提案する。
外部知識を必要とせずに,効果的な構造的特徴が達成可能であることを示す。
論文 参考訳(メタデータ) (2022-04-09T09:44:05Z) - Exploring Task Difficulty for Few-Shot Relation Extraction [22.585574542329677]
Few-shot Relation extract (FSRE) は、わずかに注釈付きインスタンスで学習することで、新しい関係を認識することに焦点を当てている。
本稿では,関係ラベル情報を活用することで,より良い表現を学習するコントラスト学習に基づく新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-09-12T09:40:33Z) - Learning from Context or Names? An Empirical Study on Neural Relation
Extraction [112.06614505580501]
テキストにおける2つの主要な情報ソースの効果について検討する:テキストコンテキストとエンティティ参照(名前)
本稿では,関係抽出のための実体型コントラスト事前学習フレームワーク(RE)を提案する。
我々のフレームワークは、異なるREシナリオにおけるニューラルモデルの有効性と堅牢性を改善することができる。
論文 参考訳(メタデータ) (2020-10-05T11:21:59Z) - ALICE: Active Learning with Contrastive Natural Language Explanations [69.03658685761538]
本研究では,学習におけるデータ効率を向上させるために,AlICEを用いたアクティブラーニングを提案する。
ALICEは、まずアクティブラーニングを使用して、最も情報に富んだラベルクラスを選択し、対照的な自然言語の説明を引き出す。
意味的に抽出された知識を用いて、これらの説明から知識を抽出する。
論文 参考訳(メタデータ) (2020-09-22T01:02:07Z) - Relation-Guided Representation Learning [53.60351496449232]
本稿では,サンプル関係を明示的にモデル化し,活用する表現学習手法を提案する。
私たちのフレームワークは、サンプル間の関係をよく保存します。
サンプルをサブスペースに埋め込むことにより,本手法が大規模なサンプル外問題に対処可能であることを示す。
論文 参考訳(メタデータ) (2020-07-11T10:57:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。