Quantum chaos in the Dicke model and its variants
- URL: http://arxiv.org/abs/2305.15505v2
- Date: Tue, 24 Oct 2023 23:47:54 GMT
- Title: Quantum chaos in the Dicke model and its variants
- Authors: Devvrat Tiwari and Subhashish Banerjee
- Abstract summary: We calculate the out-of-time-ordered correlator (OTOC) for different variations of the Dicke model in an open quantum system setting.
This becomes important for the experimental studies of the OTOC and quantum chaos in the models of quantum optics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, the out-of-time-ordered correlator (OTOC) has gained much attention
as an indicator of quantum chaos. In the semi-classical limit, its exponential
growth rate resembles the classical Lyapunov exponent. The quantum-classical
correspondence has been supported for the one-body chaotic systems as well as
realistic systems with interactions, as in the Dicke model, a model of
multi-two-level atoms and cavity field interactions. To this end, we calculate
the OTOC for different variations of the Dicke model in an open quantum system
setting. The connection between the superradiant phase transition of the Dicke
model and the OTOC is studied. Further, we establish a relation between the
OTOC and the second-order coherence function. This becomes important for the
experimental studies of the OTOC and quantum chaos in the models of quantum
optics.
Related papers
- Variational approach to light-matter interaction: Bridging quantum and semiclassical limits [0.0]
We present a time-dependent variational approach to simulate the dynamics of light-matter systems.
The variational approach is applicable to a variety of quantum models of light-matter interaction.
arXiv Detail & Related papers (2024-07-17T00:53:33Z) - Dynamics of a Generalized Dicke Model for Spin-1 Atoms [0.0]
The Dicke model is a staple of theoretical cavity Quantum Electrodynamics (cavity QED)
It demonstrates a rich variety of dynamics such as phase transitions, phase multistability, and chaos.
The varied and complex behaviours admitted by the model highlights the need to more rigorously map its dynamics.
arXiv Detail & Related papers (2024-03-04T04:09:35Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Quantum collapse and exponential growth of out-of-time-ordered
correlator in anisotropic quantum Rabi model [10.967081346848687]
We show that the exponential growth of the out-of-time-ordered correlator (OTOC) at early times for the initial states centered both in the chaotic and stable regions of the anisotropic quantum Rabi model.
We attribute the exponential growth of the OTOC to quantum collapse which provides a novel mechanism of yielding exponential growth of the OTOC in quantum systems.
Our results show that compared with the OTOC, the linear entanglement entropy and Loschmidt echo seem to be more effective to diagnose the signals of quantum chaos in the anisotropic quantum Rabi model.
arXiv Detail & Related papers (2023-05-27T15:23:37Z) - Quantum Lyapunov exponent in dissipative systems [68.8204255655161]
The out-of-time order correlator (OTOC) has been widely studied in closed quantum systems.
We study the interplay between these two processes.
The OTOC decay rate is closely related to the classical Lyapunov.
arXiv Detail & Related papers (2022-11-11T17:06:45Z) - New insights on the quantum-classical division in light of Collapse
Models [63.942632088208505]
We argue that the division between quantum and classical behaviors is analogous to the division of thermodynamic phases.
A specific relationship between the collapse parameter $(lambda)$ and the collapse length scale ($r_C$) plays the role of the coexistence curve in usual thermodynamic phase diagrams.
arXiv Detail & Related papers (2022-10-19T14:51:21Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Genuine Multipartite Correlations in a Boundary Time Crystal [56.967919268256786]
We study genuine multipartite correlations (GMC's) in a boundary time crystal (BTC)
We analyze both (i) the structure (orders) of GMC's among the subsystems, as well as (ii) their build-up dynamics for an initially uncorrelated state.
arXiv Detail & Related papers (2021-12-21T20:25:02Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - The nonlinear semiclassical dynamics of the unbalanced, open Dicke model [0.0]
The Dicke model exhibits a quantum phase transition to a state in which the atoms collectively emit light into the cavity mode, known as superradiance.
We study this system in the semiclassical (mean field) limit, neglecting the role of quantum fluctuations.
We find that a flip of the collective spin can result in the sudden emergence of chaotic dynamics.
arXiv Detail & Related papers (2020-04-09T11:13:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.