Microscope for Quantum Dynamics with Planck Cell Resolution
- URL: http://arxiv.org/abs/2101.09971v1
- Date: Mon, 25 Jan 2021 09:30:15 GMT
- Title: Microscope for Quantum Dynamics with Planck Cell Resolution
- Authors: Zhenduo Wang, Jiajin Feng, and Biao Wu
- Abstract summary: dependence of this OTOC on the initial state makes it function like a microscope.
We find an explicit relation of this OTOC to the spreading of the wave function in the Hilbert space.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the out-of-time-correlation(OTOC) with the Planck cell
resolution. The dependence of this OTOC on the initial state makes it function
like a microscope, allowing us to investigate the fine structure of quantum
dynamics beyond the thermal state. We find an explicit relation of this OTOC to
the spreading of the wave function in the Hilbert space, unifying two branches
of the study of quantum chaos: state evolution and operator dynamics. By
analyzing it in the vicinity of the classical limit, we clarify the dependence
of the OTOC's exponential growth on the classical Lyapunov exponent.
Related papers
- Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Quantum collapse and exponential growth of out-of-time-ordered
correlator in anisotropic quantum Rabi model [10.967081346848687]
We show that the exponential growth of the out-of-time-ordered correlator (OTOC) at early times for the initial states centered both in the chaotic and stable regions of the anisotropic quantum Rabi model.
We attribute the exponential growth of the OTOC to quantum collapse which provides a novel mechanism of yielding exponential growth of the OTOC in quantum systems.
Our results show that compared with the OTOC, the linear entanglement entropy and Loschmidt echo seem to be more effective to diagnose the signals of quantum chaos in the anisotropic quantum Rabi model.
arXiv Detail & Related papers (2023-05-27T15:23:37Z) - Quantum chaos in the Dicke model and its variants [0.0]
We calculate the out-of-time-ordered correlator (OTOC) for different variations of the Dicke model in an open quantum system setting.
This becomes important for the experimental studies of the OTOC and quantum chaos in the models of quantum optics.
arXiv Detail & Related papers (2023-05-24T18:53:33Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum Lyapunov exponent in dissipative systems [68.8204255655161]
The out-of-time order correlator (OTOC) has been widely studied in closed quantum systems.
We study the interplay between these two processes.
The OTOC decay rate is closely related to the classical Lyapunov.
arXiv Detail & Related papers (2022-11-11T17:06:45Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Fingerprint of chaos and quantum scars in kicked Dicke model: An
out-of-time-order correlator study [0.3867363075280543]
We investigate the onset of chaos in a periodically kicked Dicke model (KDM) using the out-of-time-order correlator (OTOC) as a diagnostic tool.
In the large spin limit, the classical Hamiltonian map is constructed, which allows us to investigate the corresponding phase space dynamics.
The relevance of the present study in the context of ongoing cold atom experiments is also discussed.
arXiv Detail & Related papers (2021-01-13T15:53:53Z) - The Squeezed OTOC and Cosmology [0.0]
Exponential growth in the out-of-time-order correlator (OTOC) is an important potential signature of quantum chaos.
We find that the OTOC for a generic highly squeezed quantum state is exponentially large, suggesting that highly squeezed states are "primed" for quantum chaos.
We find that the quantum Lyapunov spectrum shows some universal behavior: the OTOC grows proportional to the scale factor for perturbation wavelengths larger than the cosmological Hubble horizon.
arXiv Detail & Related papers (2020-10-16T21:02:26Z) - The Cosmological OTOC: Formulating new cosmological micro-canonical
correlation functions for random chaotic fluctuations in Out-of-Equilibrium
Quantum Statistical Field Theory [0.0]
The out-of-time correlation function is an important new probe in quantum field theory which is treated as a significant measure of random quantum correlations.
We demonstrate a formalism using which for the first time we compute the Cosmological OTOC during the particle production during inflation and reheating.
arXiv Detail & Related papers (2020-05-24T14:18:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.