論文の概要: Counterfactual Generative Models for Time-Varying Treatments
- arxiv url: http://arxiv.org/abs/2305.15742v1
- Date: Thu, 25 May 2023 05:45:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-26 17:14:28.227523
- Title: Counterfactual Generative Models for Time-Varying Treatments
- Title(参考訳): 時変処理のための相反的生成モデル
- Authors: Shenghao Wu, Wenbin Zhou, Minshuo Chen, Shixiang Zhu
- Abstract要約: 平均因果効果の測定は、新しい治療法をテストする一般的な方法である。
対物分布における「マスク」平均効果
本稿では, 対物分布全体を捉える条件付き生成モデリング手法を提案する。
- 参考スコア(独自算出の注目度): 15.337123411743587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating average causal effects is a common practice to test new
treatments. However, the average effect ''masks'' important individual
characteristics in the counterfactual distribution, which may lead to safety,
fairness, and ethical concerns. This issue is exacerbated in the temporal
setting, where the treatment is sequential and time-varying, leading to an
intricate influence on the counterfactual distribution. In this paper, we
propose a novel conditional generative modeling approach to capture the whole
counterfactual distribution, allowing efficient inference on certain statistics
of the counterfactual distribution. This makes the proposed approach
particularly suitable for healthcare and public policy making. Our generative
modeling approach carefully tackles the distribution mismatch in the observed
data and the targeted counterfactual distribution via a marginal structural
model. Our method outperforms state-of-the-art baselines on both synthetic and
real data.
- Abstract(参考訳): 平均因果効果の推定は、新しい治療法をテストする一般的なプラクティスである。
しかし, 対物分布における「マスク」の平均的影響は, 安全性, 公正性, 倫理的懸念につながる可能性がある。
この問題は、治療が逐次的かつ時間的に進行する時間的設定において悪化し、偽物分布に複雑に影響を及ぼす。
本稿では, 対実分布の特定の統計量に対する効率的な推論を可能にする, 対実分布全体を捕捉する条件付き生成モデルを提案する。
これにより、提案されたアプローチは特に医療や政策立案に適している。
生成的モデリング手法は,観測データにおける分布ミスマッチと,限界構造モデルによる対象の対物分布に慎重に取り組む。
本手法は合成データと実データの両方において最先端のベースラインを上回る。
関連論文リスト
- Conformal Prediction for Dose-Response Models with Continuous Treatments [0.23213238782019321]
本稿では,線量応答モデルに対する予測区間を生成する新しい手法を提案する。
重み付き共形予測においてカーネル関数を重みとして適用することにより,各処理値の局所的カバレッジを近似する。
論文 参考訳(メタデータ) (2024-09-30T15:40:54Z) - Conformal Diffusion Models for Individual Treatment Effect Estimation and Inference [6.406853903837333]
個々の治療効果は、個々のレベルで最もきめ細かい治療効果を提供する。
本稿では,これらの複雑な課題に対処する共形拡散モデルに基づく新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-08-02T21:35:08Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
反現実的な結果を予測することは、パーソナライズされたヘルスケアをアンロックする可能性がある。
既存の因果推論アプローチでは、観察と治療決定の間の通常の離散時間間隔が考慮されている。
そこで本研究では,腫瘍増殖モデルに基づく制御可能なシミュレーション環境を提案する。
論文 参考訳(メタデータ) (2022-06-16T17:15:15Z) - Generalization bounds and algorithms for estimating conditional average
treatment effect of dosage [13.867315751451494]
本研究では,治療薬対の条件付き平均因果効果を観測データと仮定の組み合わせで推定する作業について検討した。
これは疫学や経済学など、意思決定のために治療薬対を必要とする分野における長年にわたる課題である。
この問題に対するいくつかのベンチマークデータセットに対して、実証的に新しい最先端のパフォーマンス結果を示す。
論文 参考訳(メタデータ) (2022-05-29T15:26:59Z) - CSDI: Conditional Score-based Diffusion Models for Probabilistic Time
Series Imputation [107.63407690972139]
Conditional Score-based Diffusion Model for Imputation (CSDI) は、観測データに条件付きスコアベース拡散モデルを利用する新しい時系列計算法である。
CSDIは、一般的なパフォーマンスメトリクスの既存の確率論的計算方法よりも40-70%改善されている。
さらに、Cは最先端の決定論的計算法と比較して誤差を5-20%削減する。
論文 参考訳(メタデータ) (2021-07-07T22:20:24Z) - Sequential Deconfounding for Causal Inference with Unobserved
Confounders [18.586616164230566]
個別化治療効果を時間とともに推定する手法であるSequential Deconfounderを開発した。
これは、一般的なシーケンシャルな設定で使用できる最初の分解方法である。
本手法は, 経時的に個々の治療反応を偏りなく推定できることを実証する。
論文 参考訳(メタデータ) (2021-04-16T09:56:39Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
我々は,多くの地域の流行傾向を同時に予測するテンソル法を開発した。
stelarは離散時間差分方程式のシステムを通じて潜在時間正規化を組み込むことで長期予測を可能にする。
我々は、カウンティレベルと州レベルのCOVID-19データの両方を用いて実験を行い、このモデルが流行の興味深い潜伏パターンを識別できることを示します。
論文 参考訳(メタデータ) (2020-12-08T21:21:47Z) - Improving Maximum Likelihood Training for Text Generation with Density
Ratio Estimation [51.091890311312085]
本稿では,テキスト生成で遭遇する大規模なサンプル空間において,効率よく安定な自動回帰シーケンス生成モデルのトレーニング手法を提案する。
本手法は,品質と多様性の両面で,最大類似度推定や他の最先端シーケンス生成モデルよりも安定に優れている。
論文 参考訳(メタデータ) (2020-07-12T15:31:24Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
生存データは様々な医学的応用、すなわち薬物開発、リスクプロファイリング、臨床試験で頻繁に見られる。
本稿では,生存結果に適用可能な対実的推論のための理論的基盤を持つ統一的枠組みを提案する。
論文 参考訳(メタデータ) (2020-06-14T01:15:00Z) - Conformal Inference of Counterfactuals and Individual Treatment Effects [6.810856082577402]
そこで本研究では,反ファクトや個々の治療効果について,信頼できる間隔を推定できる共形推論に基づく手法を提案する。
既存の手法は、単純なモデルであってもかなりのカバレッジの欠陥に悩まされる。
論文 参考訳(メタデータ) (2020-06-11T01:03:32Z) - Estimating Counterfactual Treatment Outcomes over Time Through
Adversarially Balanced Representations [114.16762407465427]
時間とともに治療効果を推定するためにCRN(Counterfactual Recurrent Network)を導入する。
CRNは、患者履歴のバランスの取れた表現を構築するために、ドメイン敵のトレーニングを使用する。
本モデルでは, 正解率の予測と適切な治療時期の選択において, 誤差の低減を図っている。
論文 参考訳(メタデータ) (2020-02-10T20:47:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。