論文の概要: Towards a Capability Assessment Model for the Comprehension and Adoption
of AI in Organisations
- arxiv url: http://arxiv.org/abs/2305.15922v1
- Date: Thu, 25 May 2023 10:43:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-26 15:48:14.495856
- Title: Towards a Capability Assessment Model for the Comprehension and Adoption
of AI in Organisations
- Title(参考訳): 組織におけるAIの理解と導入のための能力評価モデルに向けて
- Authors: Butler, Tom, Espinoza-Lim\'on, Angelina, and Sepp\"al\"a, Selja
- Abstract要約: 本稿では,5レベルAI能力評価モデル(AI-CAM)と関連するAI能力マトリックス(AI-CM)について述べる。
AI-CAMは、組織におけるAIの最適な利用を達成するために、5つの能力成熟度レベルに必要な中核的な能力(ビジネス、データ、技術、組織、AIスキル、リスク、倫理的考慮)をカバーします。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The comprehension and adoption of Artificial Intelligence (AI) are beset with
practical and ethical problems. This article presents a 5-level AI Capability
Assessment Model (AI-CAM) and a related AI Capabilities Matrix (AI-CM) to
assist practitioners in AI comprehension and adoption. These practical tools
were developed with business executives, technologists, and other
organisational stakeholders in mind. They are founded on a comprehensive
conception of AI compared to those in other AI adoption models and are also
open-source artefacts. Thus, the AI-CAM and AI-CM present an accessible
resource to help inform organisational decision-makers on the capability
requirements for (1) AI-based data analytics use cases based on machine
learning technologies; (2) Knowledge representation to engineer and represent
data, information and knowledge using semantic technologies; and (3) AI-based
solutions that seek to emulate human reasoning and decision-making. The AI-CAM
covers the core capability dimensions (business, data, technology,
organisation, AI skills, risks, and ethical considerations) required at the
five capability maturity levels to achieve optimal use of AI in organisations.
- Abstract(参考訳): 人工知能(AI)の理解と採用は、実践的かつ倫理的な問題に満ちている。
本稿では,5段階のAI能力評価モデル(AI-CAM)と関連するAI能力マトリックス(AI-CM)を紹介する。
これらの実践ツールは、ビジネスエグゼクティブ、技術者、その他の組織関係者を念頭に置いて開発された。
それらは、他のAI採用モデルと比較して、AIの包括的な概念に基づいており、オープンソースのアーティファクトでもある。
このように、AI-CAMとAI-CMは、(1)機械学習技術に基づくAIベースのデータ分析ユースケース、(2)セマンティック技術を用いてデータ、情報、知識を設計、表現するための知識表現、(3)人間の推論と意思決定をエミュレートしようとするAIベースのソリューションの能力要件について、組織的な意思決定者に伝えるのに役立つリソースを提供する。
AI-CAMは、組織におけるAIの最適な利用を達成するために、5つの能力成熟度レベルに必要な中核的な能力(ビジネス、データ、技術、組織、AIスキル、リスク、倫理的考慮)をカバーする。
関連論文リスト
- AI-Driven Human-Autonomy Teaming in Tactical Operations: Proposed Framework, Challenges, and Future Directions [10.16399860867284]
人工知能(AI)技術は、人間の意思決定能力を増強することで戦術的操作を変革している。
本稿では,AI駆動型人間自律チーム(HAT)を変革的アプローチとして検討する。
我々はAI駆動型HATの重要なコンポーネントに対処する包括的フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-28T15:05:16Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
本稿では,高度AIアシスタントがもたらす倫理的・社会的リスクについて論じる。
我々は、高度なAIアシスタントを自然言語インタフェースを持つ人工知能エージェントとして定義し、ユーザに代わってアクションのシーケンスを計画し実行することを目的としている。
先進的なアシスタントの社会規模での展開を考察し、協力、株式とアクセス、誤情報、経済的影響、環境、先進的なAIアシスタントの評価方法に焦点をあてる。
論文 参考訳(メタデータ) (2024-04-24T23:18:46Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - End-User Development for Artificial Intelligence: A Systematic
Literature Review [2.347942013388615]
エンドユーザ開発(EUD)は、AIベースのシステムを自分たちのニーズに合わせて作成、カスタマイズ、あるいは適用することができる。
本稿では,AIシステムにおけるEUDの現在の状況に光を当てることを目的とした文献レビューを紹介する。
論文 参考訳(メタデータ) (2023-04-14T09:57:36Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - AI Governance for Businesses [2.072259480917207]
データを有効に活用し、AI関連のコストとリスクを最小限にすることで、AIを活用することを目指している。
この作業では、AIプロダクトをシステムとみなし、機械学習(ML)モデルによって(トレーニング)データを活用する重要な機能が提供される。
我々のフレームワークは、AIガバナンスを4次元に沿ってデータガバナンス、(ML)モデル、(AI)システムに分解します。
論文 参考訳(メタデータ) (2020-11-20T22:31:37Z) - Enterprise AI Canvas -- Integrating Artificial Intelligence into
Business [0.0]
Enterprise AIキャンバスは、データサイエンティストとビジネスエキスパートをまとめて、関連するすべての側面を議論し、定義するように設計されている。
第1部はビジネスビューと組織的な側面にフォーカスするが、第2部は基盤となる機械学習モデルとそれが使用するデータにフォーカスする。
論文 参考訳(メタデータ) (2020-09-18T07:30:56Z) - AAAI FSS-19: Human-Centered AI: Trustworthiness of AI Models and Data
Proceedings [8.445274192818825]
予測モデルは不確実性を認識し、信頼できる予測をもたらすことが不可欠である。
このシンポジウムの焦点は、データ品質と技術的堅牢性と安全性を改善するAIシステムであった。
広く定義された領域からの提出はまた、説明可能なモデル、人間の信頼、AIの倫理的側面といった要求に対処するアプローチについても論じた。
論文 参考訳(メタデータ) (2020-01-15T15:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。