論文の概要: AI Techniques in the Microservices Life-Cycle: A Survey
- arxiv url: http://arxiv.org/abs/2305.16092v1
- Date: Thu, 25 May 2023 14:24:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-26 14:49:59.779615
- Title: AI Techniques in the Microservices Life-Cycle: A Survey
- Title(参考訳): マイクロサービスライフサイクルにおけるAIテクニック: 調査
- Authors: Sergio Moreschini, Shahrzad Pour, Ivan Lanese, Daniel Balouek-Thomert,
Justus Bogner, Xiaozhou Li, Fabiano Pecorelli, Jacopo Soldani, Eddy Truyen,
Davide Taibi
- Abstract要約: マイクロサービスシステムでは、機能性は疎結合の小さなサービスによって提供され、それぞれが特定のビジネス機能に重点を置いています。
アーキテクチャスタイルに従ってシステムを構築することは、主に、どのようにデプロイされ、調整されるかについて、多くの課題をもたらします。
本稿では,人工知能の分野における技術が,これらの課題にどのように取り組んできたかについての調査を行う。
- 参考スコア(独自算出の注目度): 10.06596283248616
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Microservices is a popular architectural style for the development of
distributed software, with an emphasis on modularity, scalability, and
flexibility. Indeed, in microservice systems, functionalities are provided by
loosely coupled, small services, each focusing on a specific business
capability. Building a system according to the microservices architectural
style brings a number of challenges, mainly related to how the different
microservices are deployed and coordinated and how they interact. In this
paper, we provide a survey about how techniques in the area of Artificial
Intelligence have been used to tackle these challenges.
- Abstract(参考訳): マイクロサービスは、モジュール化、スケーラビリティ、柔軟性を重視した、分散ソフトウェア開発の一般的なアーキテクチャスタイルである。
実際、マイクロサービスシステムでは、機能性は疎結合の小さなサービスによって提供され、それぞれが特定のビジネス機能に重点を置いています。
マイクロサービスアーキテクチャスタイルに従ってシステムを構築することは、さまざまなマイクロサービスのデプロイと調整方法と、それらのインタラクション方法に関する、多くの課題をもたらす。
本稿では,人工知能の分野における技術が,これらの課題にどのように取り組んできたかについての調査を行う。
関連論文リスト
- Survey on AI-Generated Media Detection: From Non-MLLM to MLLM [51.91311158085973]
AI生成メディアを検出する方法は急速に進化してきた。
MLLMに基づく汎用検出器は、信頼性検証、説明可能性、ローカライゼーション機能を統合する。
倫理的・セキュリティ的な配慮が、重要な世界的な懸念として浮上している。
論文 参考訳(メタデータ) (2025-02-07T12:18:20Z) - Collaborative AI in Sentiment Analysis: System Architecture, Data Prediction and Deployment Strategies [3.3374611485861116]
大規模言語モデル(LLM)に基づく人工知能技術は、特に感情分析においてゲームチェンジャーとなっている。
しかし、複雑なマルチモーダルデータを処理するための多様なAIモデルの統合と、それに伴う機能抽出の高コストは、大きな課題を呈している。
本研究では,様々なAIシステムにまたがるタスクを効率的に分散・解決するための協調型AIフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-17T06:14:34Z) - How Mature is Requirements Engineering for AI-based Systems? A Systematic Mapping Study on Practices, Challenges, and Future Research Directions [5.6818729232602205]
既存のREメソッドが十分かどうか、あるいはこれらの課題に対処するために新しいメソッドが必要であるかどうかは不明だ。
既存のRE4AI研究は主に要件分析と導入に重点を置いており、ほとんどの実践はこれらの分野に適用されている。
私たちは、最も一般的な課題として、要件仕様、説明可能性、マシンラーニングエンジニアとエンドユーザのギャップを特定しました。
論文 参考訳(メタデータ) (2024-09-11T11:28:16Z) - Aligning Cyber Space with Physical World: A Comprehensive Survey on Embodied AI [129.08019405056262]
人工知能(Embodied AI)は、人工知能(AGI)の実現に不可欠である
MLMとWMは、その顕著な知覚、相互作用、推論能力のために、大きな注目を集めている。
本調査では,Embodied AIの最近の進歩を包括的に調査する。
論文 参考訳(メタデータ) (2024-07-09T14:14:47Z) - A Comprehensive Survey on Underwater Image Enhancement Based on Deep Learning [51.7818820745221]
水中画像強調(UIE)はコンピュータビジョン研究において重要な課題である。
多数のUIEアルゴリズムが開発されているにもかかわらず、網羅的で体系的なレビューはいまだに欠落している。
論文 参考訳(メタデータ) (2024-05-30T04:46:40Z) - Leveraging Multi-AI Agents for Cross-Domain Knowledge Discovery [0.0]
本研究では,マルチAIエージェントの展開によるドメイン間知識発見への新たなアプローチを提案する。
本研究は,知識ギャップの特定とブリッジングにおいて,ドメイン固有マルチAIエージェントシステムの優れた能力を示すものである。
論文 参考訳(メタデータ) (2024-04-12T14:50:41Z) - Bridging MDE and AI: A Systematic Review of Domain-Specific Languages and Model-Driven Practices in AI Software Systems Engineering [1.4853133497896698]
本研究の目的は、AIソフトウェアシステムのエンジニアリングを支援するために、DSLに依存した既存のモデル駆動アプローチを検討することである。
AIにMDEを使うことはまだ初期段階にあり、広く使われているツールやメソッドはひとつもない。
論文 参考訳(メタデータ) (2023-07-10T14:38:38Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - Towards Automated Process Planning and Mining [77.34726150561087]
我々は、AIとBPM分野の研究者が共同で働く研究プロジェクトについて紹介する。
プロセスモデルを自動的に導出するための総合的な研究課題、研究の関連分野、および総合的な研究枠組みについて論じる。
論文 参考訳(メタデータ) (2022-08-18T16:41:22Z) - Systematic Mapping Study on the Machine Learning Lifecycle [4.4090257489826845]
2005年から2020年にかけて出版された405の出版物は、5つの主要な研究トピック、31のサブトピックにマップされています。
少数の出版物がデータ管理とモデル生産の問題に焦点を合わせており、より多くの研究が全体論的観点からAIライフサイクルに対処すべきであると考えている。
論文 参考訳(メタデータ) (2021-03-11T11:44:23Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。