論文の概要: Microservices-based Software Systems Reengineering: State-of-the-Art and Future Directions
- arxiv url: http://arxiv.org/abs/2407.13915v1
- Date: Thu, 18 Jul 2024 21:59:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 19:23:11.977173
- Title: Microservices-based Software Systems Reengineering: State-of-the-Art and Future Directions
- Title(参考訳): マイクロサービスベースのソフトウェアシステム再設計 - 現状と今後の方向性
- Authors: Thakshila Imiya Mohottige, Artem Polyvyanyy, Rajkumar Buyya, Colin Fidge, Alistair Barros,
- Abstract要約: クラウドベースのマイクロサービスアーキテクチャ(MSA)と互換性のあるソフトウェアを設計することは、パフォーマンス、スケーラビリティ、可用性の制限のために不可欠である。
我々は、静的、動的、ハイブリッドなアプローチが検討されているように再デプロイ可能なシステム内のサービスを特定する方法に関する、現在の研究を包括的に調査する。
- 参考スコア(独自算出の注目度): 17.094721366340735
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Designing software compatible with cloud-based Microservice Architectures (MSAs) is vital due to the performance, scalability, and availability limitations. As the complexity of a system increases, it is subject to deprecation, difficulties in making updates, and risks in introducing defects when making changes. Microservices are small, loosely coupled, highly cohesive units that interact to provide system functionalities. We provide a comprehensive survey of current research into ways of identifying services in systems that can be redeployed as microservices. Static, dynamic, and hybrid approaches have been explored. While code analysis techniques dominate the area, dynamic and hybrid approaches remain open research topics.
- Abstract(参考訳): クラウドベースのマイクロサービスアーキテクチャ(MSA)と互換性のあるソフトウェア設計は、パフォーマンス、スケーラビリティ、可用性の制限のために不可欠である。
システムの複雑さが増大するにつれて、非推奨化やアップデートの難しさ、変更を行う際の欠陥導入のリスクが発生します。
マイクロサービスは小さく、疎結合で、システム機能の提供と相互作用する非常に凝集度の高いユニットです。
私たちは、マイクロサービスとして再デプロイ可能なシステム内のサービスを特定する方法に関する、現在の調査を包括的に調査しています。
静的、動的、ハイブリッドなアプローチが研究されている。
コード分析技術がこの分野を支配している一方で、動的およびハイブリッドなアプローチはオープンな研究トピックのままである。
関連論文リスト
- Lingma SWE-GPT: An Open Development-Process-Centric Language Model for Automated Software Improvement [62.94719119451089]
Lingma SWE-GPTシリーズは、現実世界のコード提出活動から学び、シミュレーションする。
Lingma SWE-GPT 72BはGitHubの30.20%の問題を解決する。
論文 参考訳(メタデータ) (2024-11-01T14:27:16Z) - Wireless Human-Machine Collaboration in Industry 5.0 [75.78721184383897]
ワイヤレス・ヒューマン・マシン・コラボレーションは産業5.0にとって重要な進歩である。
安定性解析は、閉ループ系がモデルランダム性の下でどのように振る舞うかを証明している。
本稿では,マシンと人体制御のための2つの無線ループを組み込んだ基本WHMCモデルを確立する。
論文 参考訳(メタデータ) (2024-10-18T03:44:10Z) - Insights on Microservice Architecture Through the Eyes of Industry Practitioners [39.58317527488534]
マイクロサービスアーキテクチャの採用は、ここ数年で大幅に増加しています。
本研究では,モノリシックなレガシーシステムからの移行に伴うモチベーション,活動,課題について検討する。
論文 参考訳(メタデータ) (2024-08-19T21:56:58Z) - An Infrastructure Cost Optimised Algorithm for Partitioning of Microservices [20.638612359627952]
アプリケーションをクラウドに移行することは、ソフトウェア業界で広く採用されているため、分散クラウドにデプロイするアプリケーションにとって、最も適しており、広く受け入れられているアーキテクチャパターンであることが証明されている。
信頼性や障害分離,スケーラビリティ,アセットメンテナンスの容易さやオーナシップ境界の明確化など,技術的メリットの両面から,その有効性を実現しています。
場合によっては、既存のアプリケーションをアーキテクチャに移行するという複雑さは、圧倒的に複雑でコストがかかります。
論文 参考訳(メタデータ) (2024-08-13T02:08:59Z) - Fostering Microservice Maintainability Assurance through a Comprehensive Framework [0.0]
このプロジェクトの目的は、マイクロサービスベースのシステムに対する保守性保証を提供することだ。
マイクロサービスアーキテクチャに適した自動アセスメントフレームワークが導入されている。
このフレームワークは、アーティファクトからシステム特性の全体像まで、さまざまなレベルに対処する。
論文 参考訳(メタデータ) (2024-07-23T22:45:29Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - A Microservices Identification Method Based on Spectral Clustering for
Industrial Legacy Systems [5.255685751491305]
本稿では,スペクトルグラフ理論に基づくマイクロサービス候補抽出のための自動分解手法を提案する。
提案手法は,ドメインの専門家が関与しなくても,良好な結果が得られることを示す。
論文 参考訳(メタデータ) (2023-12-20T07:47:01Z) - AI Techniques in the Microservices Life-Cycle: A Survey [10.06596283248616]
マイクロサービスシステムでは、機能性は疎結合の小さなサービスによって提供され、それぞれが特定のビジネス機能に重点を置いています。
アーキテクチャスタイルに従ってシステムを構築することは、主に、どのようにデプロイされ、調整されるかについて、多くの課題をもたらします。
本稿では,人工知能の分野における技術が,これらの課題にどのように取り組んできたかについての調査を行う。
論文 参考訳(メタデータ) (2023-05-25T14:24:37Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
近年の予測機械学習の進歩は、製造における様々なユースケースに応用されている。
ほとんどの研究は、それに関連する不確実性に対処することなく予測精度を最大化することに焦点を当てた。
本稿では,機械学習における不確実性の原因を特定し,不確実性下での機械学習システムの成功基準を確立する。
論文 参考訳(メタデータ) (2021-07-28T10:28:05Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。