The Evolution of the Bell Notion of Beable: from Bohr to Primitive
Ontology
- URL: http://arxiv.org/abs/2305.16194v1
- Date: Thu, 25 May 2023 15:55:15 GMT
- Title: The Evolution of the Bell Notion of Beable: from Bohr to Primitive
Ontology
- Authors: Federico Laudisa
- Abstract summary: John S. Bell introduced the notion of beable, as opposed to the standard notion of observable, in order to emphasize the need for an unambiguous formulation of quantum mechanics.
I show that Bell formulated in fact two different theories of beables. The first is somehow reminiscent of the Bohr views on quantum mechanics but, at the same time, is curiously adopted by Bell as a critical tool against the Copenhagen interpretation.
I consider how the distinction between the two formulations of the Bell theory of beables fares vis-a-vis the complex relationship between the theory of beables and the details of the Primitive Ontology
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: John S. Bell introduced the notion of beable, as opposed to the standard
notion of observable, in order to emphasize the need for an unambiguous
formulation of quantum mechanics. In the paper I show that Bell formulated in
fact two different theories of beables. The first is somehow reminiscent of the
Bohr views on quantum mechanics but, at the same time, is curiously adopted by
Bell as a critical tool against the Copenhagen interpretation, whereas the
second, more mature formulation was among the sources of inspiration of the
so-called Primitive Ontology (PO) approach to quantum mechanics, an approach
inspired to scientific realism. In the first part of the paper it is argued
that, contrary to the Bell wishes, the first formulation of the theory fails to
be an effective recipe for addressing the ambiguity underlying the standard
formulation of quantum mechanics, whereas it is only the second formulation
that successfully paves the way to the PO approach. In the second part, I
consider how the distinction between the two formulations of the Bell theory of
beables fares vis-a-vis the complex relationship between the theory of beables
and the details of the PO approach.
Related papers
- The Measurement Problem Is a Feature, Not a Bug--Schematising the
Observer and the Concept of an Open System on an Informational, or
(Neo-)Bohrian, Approach [0.0]
I argue that quantum mechanics represents what Bohr called a natural generalisation of the ordinary causal description''
I show how the quantum generalisation of the concept of an open system may be used to assuage Einstein's complaint.
arXiv Detail & Related papers (2023-08-31T00:19:04Z) - Quantum Theory Needs (And Probably Has) Real Reduction [0.0]
It appears that for quantum theory to be viable in a realist sense, it must possess genuine, physical non-unitarity.
Penrose's theory of gravitation-induced collapse and the Transactional Interpretation are discussed.
arXiv Detail & Related papers (2023-04-20T21:25:23Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Bell nonlocality in networks [62.997667081978825]
Bell's theorem proves that quantum theory is inconsistent with local physical models.
In the last decade, the investigation of nonlocality has moved beyond Bell's theorem to consider more sophisticated experiments.
This review discusses the main concepts, methods, results and future challenges in the emerging topic of Bell nonlocality in networks.
arXiv Detail & Related papers (2021-04-21T18:00:48Z) - Formalization of Bohr's contextuality within theory of open quantum
systems [0.0]
Bohr was the first who pointed to contextuality of quantum measurements.
The original Bohr's contextuality, as contextuality of each quantum measurement, was practically forgotten.
This note is applied to formalization of Bohr's contextuality within the the scheme of indirect measurements.
arXiv Detail & Related papers (2021-02-18T06:59:56Z) - Measuring Quantum Superpositions (Or, "It is only the theory which
decides what can be observed.") [0.0]
We argue that the ad hoc introduction of the projection postulate (or measurement rule) can be understood as a necessary requirement coming from a naive empiricist standpoint.
We discuss the general physical conditions for measuring and observing quantum superpositions.
arXiv Detail & Related papers (2020-07-02T14:30:56Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Quantum postulate vs. quantum nonlocality: Is Devil in h? [0.0]
Bell's model with hidden variables is that it straightforwardly contradicts to the Heinsenberg's uncertainty and generally Bohr's complementarity principles.
Bell's approach with hidden variable straightforwardly implies rejection of the quantum postulate.
arXiv Detail & Related papers (2020-03-12T11:59:14Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.