論文の概要: Benchmarking large language models for biomedical natural language processing applications and recommendations
- arxiv url: http://arxiv.org/abs/2305.16326v5
- Date: Fri, 25 Apr 2025 22:22:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:51.500281
- Title: Benchmarking large language models for biomedical natural language processing applications and recommendations
- Title(参考訳): バイオメディカル自然言語処理のための大規模言語モデルのベンチマークと勧告
- Authors: Qingyu Chen, Yan Hu, Xueqing Peng, Qianqian Xie, Qiao Jin, Aidan Gilson, Maxwell B. Singer, Xuguang Ai, Po-Ting Lai, Zhizheng Wang, Vipina Kuttichi Keloth, Kalpana Raja, Jiming Huang, Huan He, Fongci Lin, Jingcheng Du, Rui Zhang, W. Jim Zheng, Ron A. Adelman, Zhiyong Lu, Hua Xu,
- Abstract要約: 大規模言語モデル(LLM)は、一般的なドメインにおいて有望であることを示している。
我々は、そのゼロショット、少数ショット、微調整性能を従来のBERTモデルやBARTモデルと比較する。
LLM出力の不足情報や幻覚といった問題を見つけます。
- 参考スコア(独自算出の注目度): 22.668383945059762
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid growth of biomedical literature poses challenges for manual knowledge curation and synthesis. Biomedical Natural Language Processing (BioNLP) automates the process. While Large Language Models (LLMs) have shown promise in general domains, their effectiveness in BioNLP tasks remains unclear due to limited benchmarks and practical guidelines. We perform a systematic evaluation of four LLMs, GPT and LLaMA representatives on 12 BioNLP benchmarks across six applications. We compare their zero-shot, few-shot, and fine-tuning performance with traditional fine-tuning of BERT or BART models. We examine inconsistencies, missing information, hallucinations, and perform cost analysis. Here we show that traditional fine-tuning outperforms zero or few shot LLMs in most tasks. However, closed-source LLMs like GPT-4 excel in reasoning-related tasks such as medical question answering. Open source LLMs still require fine-tuning to close performance gaps. We find issues like missing information and hallucinations in LLM outputs. These results offer practical insights for applying LLMs in BioNLP.
- Abstract(参考訳): 医学文献の急速な成長は、手作業による知識のキュレーションと合成の課題を引き起こしている。
バイオメディカル自然言語処理(BioNLP)がプロセスを自動化する。
LLM(Large Language Models)は一般的なドメインでは有望だが,ベンチマークや実践的ガイドラインが限定されているため,BioNLPタスクの有効性は明らかではない。
6つのアプリケーションにまたがる12のBioNLPベンチマークにおいて、GPTおよびLLaMAの4つのLLMの系統的評価を行う。
我々は、そのゼロショット、少数ショット、微調整性能を従来のBERTモデルやBARTモデルと比較する。
不整合、情報不足、幻覚、コスト分析について検討する。
ここでは、従来の微調整は、ほとんどのタスクにおいてゼロまたは少数ショットLLMよりも優れていることを示す。
しかし、GPT-4のようなクローズドソースのLCMは、医学的質問応答のような推論に関連したタスクに優れている。
オープンソースのLLMは、パフォーマンスのギャップを埋めるために微調整が必要である。
LLM出力の不足情報や幻覚といった問題を見つけます。
これらの結果は,BioNLPにLLMを適用するための実践的な洞察を与える。
関連論文リスト
- Benchmarking Large Language Models on Multiple Tasks in Bioinformatics NLP with Prompting [17.973195066083797]
大規模言語モデル(LLM)は生物学的問題を解決する上で重要なツールとなっている。
我々はBio-benchmarkと呼ばれる総合的なプロンプトベースのベンチマークフレームワークを導入する。
GPT-4oとLlama-3.1-70bを含む6つの主要LCMを0ショットと数ショットのChain-of-Thought設定を用いて評価した。
論文 参考訳(メタデータ) (2025-03-06T02:01:59Z) - Making LLMs Reason? The Intermediate Language Problem in Neurosymbolic Approaches [49.567092222782435]
本稿では、ニューロシンボリックアプローチに適した形式言語表現を選択する問題である中間言語問題を紹介する。
全体の精度は53.20%、実行精度は49.26%である。
GPT4o-mini LLMを使用すると、ProofWriterデータセットの全体的な精度が21.20%、50.50%向上する。
論文 参考訳(メタデータ) (2025-02-24T14:49:52Z) - Automatic Evaluation for Text-to-image Generation: Task-decomposed Framework, Distilled Training, and Meta-evaluation Benchmark [62.58869921806019]
GPT-4oに基づくタスク分解評価フレームワークを提案し、新しいトレーニングデータセットを自動構築する。
我々は、GPT-4oの評価能力を7BオープンソースMLLM、MiniCPM-V-2.6に効果的に蒸留するための革新的なトレーニング戦略を設計する。
実験結果から,我々の蒸留したオープンソースMLLMは,現在のGPT-4oベースラインよりも有意に優れていた。
論文 参考訳(メタデータ) (2024-11-23T08:06:06Z) - MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
MLLM(Multimodal Large Language Models)は、産業と学術の両方から注目を集めている。
開発プロセスでは、モデルの改善に関する直感的なフィードバックとガイダンスを提供するため、評価が重要である。
この研究は、研究者に異なるニーズに応じてMLLMを効果的に評価する方法を簡単に把握し、より良い評価方法を促すことを目的としている。
論文 参考訳(メタデータ) (2024-11-22T18:59:54Z) - NeuroSym-BioCAT: Leveraging Neuro-Symbolic Methods for Biomedical Scholarly Document Categorization and Question Answering [0.14999444543328289]
本稿では,最適化されたトピックモデリングフレームワークであるOVB-LDAとBI-POP CMA-ES最適化技術を統合し,学術文書の抽象分類を強化した新しい手法を提案する。
我々は、ドメイン固有データに基づいて微調整された蒸留MiniLMモデルを用いて、高精度な回答抽出を行う。
論文 参考訳(メタデータ) (2024-10-29T14:45:12Z) - THaMES: An End-to-End Tool for Hallucination Mitigation and Evaluation in Large Language Models [0.0]
事実的に誤ったコンテンツの生成である幻覚は、大規模言語モデルにおいてますます困難になっている。
本稿では,このギャップに対処する統合フレームワークとライブラリであるTHaMESを紹介する。
THaMES は LLM における幻覚の評価と緩和のためのエンドツーエンドのソリューションを提供する。
論文 参考訳(メタデータ) (2024-09-17T16:55:25Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Detecting Hallucinations in Large Language Model Generation: A Token Probability Approach [0.0]
LLM(Large Language Models)は、幻覚と呼ばれる不正確な出力を生成する。
本稿では,トークンから得られる4つの数値的特徴と,他の評価者から得られる語彙的確率を用いた教師付き学習手法を提案する。
この方法は有望な結果をもたらし、3つの異なるベンチマークで複数のタスクで最先端の結果を上回る。
論文 参考訳(メタデータ) (2024-05-30T03:00:47Z) - Comparative Analysis of Open-Source Language Models in Summarizing Medical Text Data [5.443548415516227]
大規模言語モデル(LLM)は,非構造化テキストデータに対する問合せおよび要約処理において,優れた性能を示した。
医用要約タスクにおけるオープンソースのLCMの性能分析のための評価手法を提案する。
論文 参考訳(メタデータ) (2024-05-25T16:16:22Z) - BiomedRAG: A Retrieval Augmented Large Language Model for Biomedicine [19.861178160437827]
大規模言語モデル(LLM)は、バイオメディカルおよび医療分野における様々な応用のための重要なリソースとして急速に現れてきた。
textscBiomedRAGは5つのバイオメディカルNLPタスクで優れたパフォーマンスを実現している。
textscBiomedRAG は、GIT と ChemProt コーパスにおいて、マイクロF1スコアが 81.42 と 88.83 の他のトリプル抽出システムより優れている。
論文 参考訳(メタデータ) (2024-05-01T12:01:39Z) - An Evaluation of Large Language Models in Bioinformatics Research [52.100233156012756]
本研究では,大規模言語モデル(LLM)の性能について,バイオインフォマティクスの幅広い課題について検討する。
これらのタスクには、潜在的なコーディング領域の同定、遺伝子とタンパク質の命名されたエンティティの抽出、抗微生物および抗がんペプチドの検出、分子最適化、教育生物情報学問題の解決が含まれる。
以上の結果から, GPT 変種のような LLM がこれらのタスクの多くをうまく処理できることが示唆された。
論文 参考訳(メタデータ) (2024-02-21T11:27:31Z) - Zero-shot Generative Large Language Models for Systematic Review
Screening Automation [55.403958106416574]
本研究では,ゼロショット大言語モデルを用いた自動スクリーニングの有効性について検討した。
本研究では, 8種類のLCMの有効性を評価し, 予め定義されたリコール閾値を用いた校正手法について検討する。
論文 参考訳(メタデータ) (2024-01-12T01:54:08Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
我々は、軽量なアダプターモジュールを用いて、構造化された生体医学的知識を事前訓練された言語モデルに注入するアプローチを開発した。
バイオメディカル知識システムUMLSと新しいバイオケミカルOntoChemの2つの大きなKGと、PubMedBERTとBioLinkBERTの2つの著名なバイオメディカルPLMを使用している。
計算能力の要件を低く保ちながら,本手法がいくつかの事例において性能改善につながることを示す。
論文 参考訳(メタデータ) (2023-12-21T14:26:57Z) - BioInstruct: Instruction Tuning of Large Language Models for Biomedical Natural Language Processing [10.698756010878688]
25,005の命令から大規模言語モデル(LLM)を作成する。
命令は、80人のキュレートされた命令からランダムに3列のサンプルを引いたGPT-4言語モデルによって作成される。
いくつかのBioNLPタスクにおいて、これらの命令調整LDMを評価し、質問応答(QA)、情報抽出(IE)、テキスト生成(GEN)の3つの主要なカテゴリに分類できる。
論文 参考訳(メタデータ) (2023-10-30T19:38:50Z) - A Comprehensive Evaluation of Large Language Models on Benchmark
Biomedical Text Processing Tasks [2.5027382653219155]
本稿では,バイオメディカル・タスクのベンチマークにおいて,LLM(Large Language Models)の性能を評価することを目的とする。
我々の知る限りでは、生物医学領域における様々なLSMの広範な評価と比較を行う最初の研究である。
論文 参考訳(メタデータ) (2023-10-06T14:16:28Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
大規模言語モデル (LLMs) は、数発のテキスト内学習を通じて臨床キュレーションを加速する可能性を示している。
正確性や解釈可能性に関する問題、特に健康のようなミッションクリティカルな領域ではまだ苦戦している。
本稿では,自己検証を用いた汎用的な緩和フレームワークについて検討する。このフレームワークはLLMを利用して,自己抽出のための証明を提供し,その出力をチェックする。
論文 参考訳(メタデータ) (2023-05-30T22:05:11Z) - Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis [103.89753784762445]
大規模言語モデル(LLM)は多言語機械翻訳(MMT)の処理において顕著な可能性を示した。
本稿では, MMT における LLM の利点と課題を体系的に検討する。
また,ChatGPTとGPT-4を含む8つのLLMを徹底的に評価した。
論文 参考訳(メタデータ) (2023-04-10T15:51:30Z) - Evaluation of ChatGPT Family of Models for Biomedical Reasoning and
Classification [6.163540203358258]
本研究では,大規模言語モデル(LLM)の性能について,質問応答以外のバイオメディカルな課題について検討した。
OpenAI APIの公開インターフェースに患者データを渡すことはできないため、モデルのパフォーマンスを10000以上のサンプルで評価した。
2つの基本的なNLPタスクの微調整が最良戦略であることがわかった。
論文 参考訳(メタデータ) (2023-04-05T15:11:25Z) - PAL: Program-aided Language Models [112.94785609781503]
自然言語問題を理解するために,プログラム支援言語モデル(PaL)を提案する。
PaLはソリューションステップをPythonインタプリタのようなプログラムランタイムにオフロードする。
私たちは12のベンチマークで新しい最先端の結果を設定しました。
論文 参考訳(メタデータ) (2022-11-18T18:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。