論文の概要: FairDP: Certified Fairness with Differential Privacy
- arxiv url: http://arxiv.org/abs/2305.16474v1
- Date: Thu, 25 May 2023 21:07:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2023-05-29 18:17:36.881065
- Title: FairDP: Certified Fairness with Differential Privacy
- Title(参考訳): fairdp: 異なるプライバシーを持つ認定公正性
- Authors: Khang Tran, Ferdinando Fioretto, Issa Khalil, My T. Thai, NhatHai Phan
- Abstract要約: 本稿では,FairDPについて紹介する。FairDPは,差分プライバシー(DP)と公正性を同時に確保するためのメカニズムである。
FairDPは、グループ固有のクリッピング用語を使用して、DPの異なる影響を評価し、バウンドする、独立した個別グループのためのモデルによって運営される。
トレーニングプロセスを通じて、このメカニズムはグループモデルからの知識を統合し、下流タスクのプライバシ、ユーティリティ、公正性のバランスをとる包括的なモデルを定式化する。
- 参考スコア(独自算出の注目度): 47.78875865923179
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces FairDP, a novel mechanism designed to simultaneously
ensure differential privacy (DP) and fairness. FairDP operates by independently
training models for distinct individual groups, using group-specific clipping
terms to assess and bound the disparate impacts of DP. Throughout the training
process, the mechanism progressively integrates knowledge from group models to
formulate a comprehensive model that balances privacy, utility, and fairness in
downstream tasks. Extensive theoretical and empirical analyses validate the
efficacy of FairDP, demonstrating improved trade-offs between model utility,
privacy, and fairness compared with existing methods.
- Abstract(参考訳): 本稿では,差分プライバシー(dp)と公平性を同時に確保する新しいメカニズムであるfairdpについて述べる。
fairdpは独立した個別グループのためのモデルを訓練し、グループ固有のクリッピング用語を用いてdpの異なる影響を評価し、限定する。
トレーニングプロセスを通じて、このメカニズムはグループモデルからの知識を段階的に統合し、下流タスクにおけるプライバシ、ユーティリティ、公平性のバランスをとる包括的なモデルを定式化する。
広範に理論的および実証的な分析により、FairDPの有効性が検証され、モデルユーティリティ、プライバシ、公正性のトレードオフが改善された。
関連論文リスト
- Learning Heterogeneous Performance-Fairness Trade-offs in Federated Learning [6.6763659758988885]
HetPFL は Preference Smpling Adaptation (PSA) と Preference-aware Hypernet Fusion (PHF) から構成される。
We prove that HetPFL converges to the number of rounds, under weaker assumptions than existing method。
論文 参考訳(メタデータ) (2025-04-30T16:25:02Z) - PA-CFL: Privacy-Adaptive Clustered Federated Learning for Transformer-Based Sales Forecasting on Heterogeneous Retail Data [47.745068077169954]
フェデレートラーニング(FL)により、小売店はプライバシを維持しながら需要予測のためのモデルパラメータを共有できる。
異種小売データの需要予測に適したプライバシ適応クラスタ型フェデレートラーニング(PA-CFL)を提案する。
論文 参考訳(メタデータ) (2025-03-15T18:07:54Z) - MITA: Bridging the Gap between Model and Data for Test-time Adaptation [68.62509948690698]
テスト時間適応(TTA)は、モデルの一般化性を高めるための有望なパラダイムとして登場した。
本稿では,Met-In-The-MiddleをベースとしたMITAを提案する。
論文 参考訳(メタデータ) (2024-10-12T07:02:33Z) - CorBin-FL: A Differentially Private Federated Learning Mechanism using Common Randomness [6.881974834597426]
Federated Learning (FL)は、分散機械学習のための有望なフレームワークとして登場した。
相関2値量子化を用いて差分プライバシーを実現するプライバシー機構であるCorBin-FLを導入する。
また,PLDP,ユーザレベル,サンプルレベルの中央差分プライバシー保証に加えて,AugCorBin-FLも提案する。
論文 参考訳(メタデータ) (2024-09-20T00:23:44Z) - Conformal Diffusion Models for Individual Treatment Effect Estimation and Inference [6.406853903837333]
個々の治療効果は、個々のレベルで最もきめ細かい治療効果を提供する。
本稿では,これらの複雑な課題に対処する共形拡散モデルに基づく新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-08-02T21:35:08Z) - Incentives in Private Collaborative Machine Learning [56.84263918489519]
コラボレーション型機械学習は、複数のパーティのデータに基づいてモデルをトレーニングする。
インセンティブとして差分プライバシー(DP)を導入する。
合成および実世界のデータセットに対するアプローチの有効性と実用性を実証的に実証した。
論文 参考訳(メタデータ) (2024-04-02T06:28:22Z) - Spectral Co-Distillation for Personalized Federated Learning [69.97016362754319]
本稿では,モデルスペクトル情報に基づく新しい蒸留法を提案する。
また、汎用モデルトレーニングとパーソナライズモデルトレーニングの双方向ブリッジを確立するための共蒸留フレームワークも導入する。
提案したスペクトル共蒸留法の有効性と性能を実証し,また,待ち時間のないトレーニングプロトコルについて述べる。
論文 参考訳(メタデータ) (2024-01-29T16:01:38Z) - Distributional Counterfactual Explanations With Optimal Transport [7.597676579494146]
対実的説明 (CE) は、ブラックボックスの意思決定モデルに関する洞察を提供するための事実上の方法である。
本稿では,観測データの分布特性に焦点を移すDCE(distributal counterfactual explanation)を提案する。
論文 参考訳(メタデータ) (2024-01-23T21:48:52Z) - Automated discovery of trade-off between utility, privacy and fairness
in machine learning models [8.328861861105889]
手動制約設定プロセスによって達成された既知の結果の再現にPFairDPをどのように利用できるかを示す。
さらに,複数のモデルとデータセットを用いたPFairDPの有効性を示す。
論文 参考訳(メタデータ) (2023-11-27T10:28:44Z) - Leveraging Diffusion Disentangled Representations to Mitigate Shortcuts
in Underspecified Visual Tasks [92.32670915472099]
拡散確率モデル(DPM)を用いた合成カウンターファクトの生成を利用したアンサンブルの多様化フレームワークを提案する。
拡散誘導型分散化は,データ収集を必要とする従来の手法に匹敵するアンサンブル多様性を達成し,ショートカットからの注意を回避できることを示す。
論文 参考訳(メタデータ) (2023-10-03T17:37:52Z) - Fair-CDA: Continuous and Directional Augmentation for Group Fairness [48.84385689186208]
公正な制約を課すための詳細なデータ拡張戦略を提案する。
グループ間の感性のある特徴の遷移経路のモデルを正規化することにより、グループフェアネスを実現することができることを示す。
提案手法はデータ生成モデルを仮定せず,精度と公平性の両方に優れた一般化を実現する。
論文 参考訳(メタデータ) (2023-04-01T11:23:00Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
この研究は、DualFairと呼ばれる自己教師型モデルを提示し、学習された表現から性別や人種などのセンシティブな属性をデバイアスすることができる。
我々のモデルは、グループフェアネスと対実フェアネスという2つのフェアネス基準を共同で最適化する。
論文 参考訳(メタデータ) (2023-03-15T07:13:54Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
まず,分布シフト,データ摂動,モデルウェイト摂動の関連性を理論的に検証した。
次に、ターゲットデータセットの公平性を保証するのに十分な条件を分析します。
これらの十分な条件により、ロバストフェアネス正則化(RFR)を提案する。
論文 参考訳(メタデータ) (2023-03-06T17:19:23Z) - Learning Informative Representation for Fairness-aware Multivariate
Time-series Forecasting: A Group-based Perspective [50.093280002375984]
多変量時系列予測モデル(MTS)では変数間の性能不公平性が広く存在する。
フェアネスを意識したMTS予測のための新しいフレームワークであるFairForを提案する。
論文 参考訳(メタデータ) (2023-01-27T04:54:12Z) - Controllable Guarantees for Fair Outcomes via Contrastive Information
Estimation [32.37031528767224]
トレーニングデータセットにおけるバイアスの制御は、下流のアプリケーションで異なるグループ間で平等に扱われることを保証するために不可欠である。
対比情報推定器に基づく相互情報によるパリティ制御の効果的な方法を示す。
uci成人および遺産健康データセットに対する我々のアプローチをテストし、このアプローチが所望のパリティ閾値にまたがってより有益な表現を提供することを実証する。
論文 参考訳(メタデータ) (2021-01-11T18:57:33Z) - Fairness by Explicability and Adversarial SHAP Learning [0.0]
本稿では,外部監査役の役割とモデル説明可能性を強調するフェアネスの新たな定義を提案する。
逆代理モデルのSHAP値から構築した正規化を用いてモデルバイアスを緩和するフレームワークを開発する。
合成データセット、UCIアダルト(国勢調査)データセット、実世界の信用評価データセットである。
論文 参考訳(メタデータ) (2020-03-11T14:36:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。