LANISTR: Multimodal Learning from Structured and Unstructured Data
- URL: http://arxiv.org/abs/2305.16556v3
- Date: Wed, 24 Apr 2024 17:37:52 GMT
- Title: LANISTR: Multimodal Learning from Structured and Unstructured Data
- Authors: Sayna Ebrahimi, Sercan O. Arik, Yihe Dong, Tomas Pfister,
- Abstract summary: LANISTR is an attention-based framework to learn from LANguage, Image, and STRuctured data.
In particular, we introduce a new similarity-based multimodal masking loss that enables it to learn cross-modal relations from large-scale multimodal data with missing modalities.
- Score: 33.73687295669768
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal large-scale pretraining has shown impressive performance for unstructured data such as language and image. However, a prevalent real-world scenario involves structured data types, tabular and time-series, along with unstructured data. Such scenarios have been understudied. To bridge this gap, we propose LANISTR, an attention-based framework to learn from LANguage, Image, and STRuctured data. The core of LANISTR's methodology is rooted in \textit{masking-based} training applied across both unimodal and multimodal levels. In particular, we introduce a new similarity-based multimodal masking loss that enables it to learn cross-modal relations from large-scale multimodal data with missing modalities. On two real-world datasets, MIMIC-IV (from healthcare) and Amazon Product Review (from retail), LANISTR demonstrates remarkable improvements, 6.6\% (in AUROC) and 14\% (in accuracy) when fine-tuned with 0.1\% and 0.01\% of labeled data, respectively, compared to the state-of-the-art alternatives. Notably, these improvements are observed even with very high ratio of samples (35.7\% and 99.8\% respectively) not containing all modalities, underlining the robustness of LANISTR to practical missing modality challenge. Our code and models will be available at https://github.com/google-research/lanistr
Related papers
- TabGLM: Tabular Graph Language Model for Learning Transferable Representations Through Multi-Modal Consistency Minimization [2.1067477213933503]
TabGLM (Tabular Graph Language Model) is a novel multi-modal architecture designed to model both structural and semantic information from a table.
It transforms each row of a table into a fully connected graph and serialized text, which are encoded using a graph neural network (GNN) and a text encoder, respectively.
Evaluations across 25 benchmark datasets demonstrate substantial performance gains.
arXiv Detail & Related papers (2025-02-26T05:32:45Z) - MINIMA: Modality Invariant Image Matching [52.505282811925454]
We present MINIMA, a unified image matching framework for multiple cross-modal cases.
We scale up the modalities from cheap but rich RGB-only matching data, by means of generative models.
With MD-syn, we can directly train any advanced matching pipeline on randomly selected modality pairs to obtain cross-modal ability.
arXiv Detail & Related papers (2024-12-27T02:39:50Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
multimodal large language models (MLLMs) have shown significant potential in a broad range of multimodal tasks.
Existing instruction-tuning datasets only provide phrase-level answers without any intermediate rationales.
We introduce a scalable and cost-effective method to construct a large-scale multimodal instruction-tuning dataset with rich intermediate rationales.
arXiv Detail & Related papers (2024-12-06T18:14:24Z) - TabDiff: a Multi-Modal Diffusion Model for Tabular Data Generation [91.50296404732902]
We introduce TabDiff, a joint diffusion framework that models all multi-modal distributions of tabular data in one model.
Our key innovation is the development of a joint continuous-time diffusion process for numerical and categorical data.
TabDiff achieves superior average performance over existing competitive baselines, with up to $22.5%$ improvement over the state-of-the-art model on pair-wise column correlation estimations.
arXiv Detail & Related papers (2024-10-27T22:58:47Z) - Distributionally robust self-supervised learning for tabular data [2.942619386779508]
Learning robust representation in presence of error slices is challenging, due to high cardinality features and the complexity of constructing error sets.
Traditional robust representation learning methods are largely focused on improving worst group performance in supervised setting in computer vision.
Our approach utilizes an encoder-decoder model trained with Masked Language Modeling (MLM) loss to learn robust latent representations.
arXiv Detail & Related papers (2024-10-11T04:23:56Z) - BabelBench: An Omni Benchmark for Code-Driven Analysis of Multimodal and Multistructured Data [61.936320820180875]
Large language models (LLMs) have become increasingly pivotal across various domains.
BabelBench is an innovative benchmark framework that evaluates the proficiency of LLMs in managing multimodal multistructured data with code execution.
Our experimental findings on BabelBench indicate that even cutting-edge models like ChatGPT 4 exhibit substantial room for improvement.
arXiv Detail & Related papers (2024-10-01T15:11:24Z) - Advancing Multi-Modal Sensing Through Expandable Modality Alignment [14.0873117319398]
We introduce the Babel framework, encompassing the neural network architecture, data preparation and processing, as well as the training strategies.
Babel serves as a scalable pre-trained multi-modal sensing neural network, currently aligning six sensing modalities.
Babel not only effectively fuses multiple available modalities (up to 22% accuracy increase), but also enhance the performance of individual modality.
arXiv Detail & Related papers (2024-07-25T05:10:48Z) - TIP: Tabular-Image Pre-training for Multimodal Classification with Incomplete Data [6.414759311130015]
We propose TIP, a novel framework for learning multimodal representations robust to incomplete data.
Specifically, TIP investigates a self-supervised learning (SSL) strategy, including a masked reconstruction task for tackling data missingness.
TIP outperforms state-of-the-art supervised/SSL image/multimodal algorithms in both complete and incomplete data scenarios.
arXiv Detail & Related papers (2024-07-10T12:16:15Z) - NativE: Multi-modal Knowledge Graph Completion in the Wild [51.80447197290866]
We propose a comprehensive framework NativE to achieve MMKGC in the wild.
NativE proposes a relation-guided dual adaptive fusion module that enables adaptive fusion for any modalities.
We construct a new benchmark called WildKGC with five datasets to evaluate our method.
arXiv Detail & Related papers (2024-03-28T03:04:00Z) - Unimodal Training-Multimodal Prediction: Cross-modal Federated Learning
with Hierarchical Aggregation [16.308470947384134]
HA-Fedformer is a novel transformer-based model that empowers unimodal training with only a unimodal dataset at the client.
We develop an uncertainty-aware aggregation method for the local encoders with layer-wise Markov Chain Monte Carlo sampling.
Our experiments on popular sentiment analysis benchmarks, CMU-MOSI and CMU-MOSEI, demonstrate that HA-Fedformer significantly outperforms state-of-the-art multimodal models.
arXiv Detail & Related papers (2023-03-27T07:07:33Z) - BiCro: Noisy Correspondence Rectification for Multi-modality Data via
Bi-directional Cross-modal Similarity Consistency [66.8685113725007]
BiCro aims to estimate soft labels for noisy data pairs to reflect their true correspondence degree.
experiments on three popular cross-modal matching datasets demonstrate that BiCro significantly improves the noise-robustness of various matching models.
arXiv Detail & Related papers (2023-03-22T09:33:50Z) - Cascaded Multi-Modal Mixing Transformers for Alzheimer's Disease
Classification with Incomplete Data [8.536869574065195]
Multi-Modal Mixing Transformer (3MAT) is a disease classification transformer that not only leverages multi-modal data but also handles missing data scenarios.
We propose a novel modality dropout mechanism to ensure an unprecedented level of modality independence and robustness to handle missing data scenarios.
arXiv Detail & Related papers (2022-10-01T11:31:02Z) - Multimodal Prototypical Networks for Few-shot Learning [20.100480009813953]
Cross-modal feature generation framework is used to enrich the low populated embedding space in few-shot scenarios.
We show that in such cases nearest neighbor classification is a viable approach and outperform state-of-the-art single-modal and multimodal few-shot learning methods.
arXiv Detail & Related papers (2020-11-17T19:32:59Z) - Relation-Guided Representation Learning [53.60351496449232]
We propose a new representation learning method that explicitly models and leverages sample relations.
Our framework well preserves the relations between samples.
By seeking to embed samples into subspace, we show that our method can address the large-scale and out-of-sample problem.
arXiv Detail & Related papers (2020-07-11T10:57:45Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.