論文の概要: A Multi-Resolution Physics-Informed Recurrent Neural Network:
Formulation and Application to Musculoskeletal Systems
- arxiv url: http://arxiv.org/abs/2305.16593v1
- Date: Fri, 26 May 2023 02:51:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-29 17:20:23.170933
- Title: A Multi-Resolution Physics-Informed Recurrent Neural Network:
Formulation and Application to Musculoskeletal Systems
- Title(参考訳): マルチレゾリューション物理インフォームドリカレントニューラルネットワーク:定式化と筋骨格系への応用
- Authors: Karan Taneja, Xiaolong He, Qizhi He and J. S. Chen
- Abstract要約: 本研究は筋骨格運動(MSK)の同時予測のための物理インフォームド・リカレントニューラルネットワーク(MR PI-RNN)を提案する。
提案手法は、高速ウェーブレット変換を用いて、混合周波数入力sEMGを分解し、ジョイントモーション信号をネスト多重解像度信号に出力する。
このフレームワークはまた、被験者の運動学データと生理的に整合した筋肉パラメータを識別することも可能である。
- 参考スコア(独自算出の注目度): 1.978587235008588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents a multi-resolution physics-informed recurrent neural
network (MR PI-RNN), for simultaneous prediction of musculoskeletal (MSK)
motion and parameter identification of the MSK systems. The MSK application was
selected as the model problem due to its challenging nature in mapping the
high-frequency surface electromyography (sEMG) signals to the low-frequency
body joint motion controlled by the MSK and muscle contraction dynamics. The
proposed method utilizes the fast wavelet transform to decompose the mixed
frequency input sEMG and output joint motion signals into nested
multi-resolution signals. The prediction model is subsequently trained on
coarser-scale input-output signals using a gated recurrent unit (GRU), and then
the trained parameters are transferred to the next level of training with
finer-scale signals. These training processes are repeated recursively under a
transfer-learning fashion until the full-scale training (i.e., with unfiltered
signals) is achieved, while satisfying the underlying dynamic equilibrium.
Numerical examples on recorded subject data demonstrate the effectiveness of
the proposed framework in generating a physics-informed forward-dynamics
surrogate, which yields higher accuracy in motion predictions of elbow
flexion-extension of an MSK system compared to the case with single-scale
training. The framework is also capable of identifying muscle parameters that
are physiologically consistent with the subject's kinematics data.
- Abstract(参考訳): 筋骨格運動(MSK)の同時予測とMSKシステムのパラメータ同定のための多分解能物理インフォームド・リカレントニューラルネットワーク(MR PI-RNN)を提案する。
高周波表面筋電図(sEMG)信号をMSKおよび筋収縮動態によって制御される低周波体関節運動にマッピングする際の困難性から,MSK応用はモデル問題として選択された。
提案手法は、高速ウェーブレット変換を用いて、混合周波数入力sEMGを分解し、ジョイントモーション信号をネスト多重解像度信号に出力する。
その後、ゲートリカレントユニット(GRU)を用いて、粗大入力出力信号に基づいて予測モデルを訓練し、その後、訓練されたパラメータをより微細な信号で次のレベルの訓練に転送する。
これらのトレーニングプロセスは、基礎となるダイナミック平衡を満たしつつ、フルスケールのトレーニング(すなわち、フィルタされていない信号)が完了するまで、移行学習方式で繰り返し繰り返される。
実験結果から,MSKシステムの肘屈曲伸展の運動予測において,単スケールトレーニングよりも高精度な物理インフォームド・フォワード・ダイナミックス・サロゲートを生成する上で,提案手法の有効性が示された。
このフレームワークはまた、被験者の運動学データと生理的に整合した筋肉パラメータを識別することも可能である。
関連論文リスト
- Multi-Parameter Molecular MRI Quantification using Physics-Informed Self-Supervised Learning [0.0]
生体物理モデルフィッティングは、生理的信号や画像から定量的パラメータを得る上で重要な役割を果たしている。
本稿では,常微分方程式(ODE)モデルを用いてパラメータ抽出逆問題の解法を提案する。
これは、数値ODEソルバをステップワイズ解析として機能させ、自動微分に基づく最適化と互換性を持たせることで実現される。
論文 参考訳(メタデータ) (2024-11-10T12:40:33Z) - Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) は、シミュレーションのない方法でニューラルSDEを訓練し、ダイナミックスを通してバックプロパゲーションをバイパスする。
絶対的性能と不確実性予測の観点から,3つの臨床時系列データセットの性能向上を実証した。
論文 参考訳(メタデータ) (2024-10-28T15:54:50Z) - KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
KFD-NeRFは,Kalmanフィルタに基づく効率的かつ高品質な運動再構成フレームワークと統合された,新しい動的ニューラル放射場である。
我々のキーとなる考え方は、動的放射場を、観測と予測という2つの知識源に基づいて時間的に異なる状態が推定される動的システムとしてモデル化することである。
我々のKFD-NeRFは、同等の計算時間と最先端の視線合成性能で、徹底的な訓練を施した類似または優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-18T05:48:24Z) - Predicting Multi-Joint Kinematics of the Upper Limb from EMG Signals
Across Varied Loads with a Physics-Informed Neural Network [0.0]
PINNモデルは、フィードフォワードニューラルネットワーク(ANN)とジョイントトルクモデルを組み合わせることで構成される。
PINNモデルのトレーニングデータセットは、EMGと4つの異なる被験者から収集された時間データを含む。
その結果,関節角度予測では58%から83%の相関が認められた。
論文 参考訳(メタデータ) (2023-11-28T16:55:11Z) - The bionic neural network for external simulation of human locomotor
system [2.6311880922890842]
本稿では,筋骨格モデルに基づく物理インフォームド深層学習法を提案し,関節運動と筋力を予測する。
この方法は、被験者固有のMSK生理学的パラメータを効果的に同定することができ、訓練された物理インフォームドフォワード力学は、正確な動きと筋力予測をもたらす。
論文 参考訳(メタデータ) (2023-09-11T23:02:56Z) - Latent State Models of Training Dynamics [51.88132043461152]
異なるランダムなシードでモデルをトレーニングし、トレーニングを通じてさまざまなメトリクスを計算します。
次に、結果のメトリクス列に隠れマルコフモデル(HMM)を適合させる。
我々はHMM表現を用いて相転移を研究し、収束を遅くする潜伏状態(detour state)を特定する。
論文 参考訳(メタデータ) (2023-08-18T13:20:08Z) - A Physics-Informed Low-Shot Learning For sEMG-Based Estimation of Muscle
Force and Joint Kinematics [4.878073267556235]
表面筋電図(sEMG)による筋力と関節キネマティクス推定はリアルタイム生体力学的解析に不可欠である。
ディープニューラルネットワーク(DNN)の最近の進歩は、完全に自動化され再現可能な方法で生体力学解析を改善する可能性を示している。
本稿では,筋力と関節キネマティクスのsEMGに基づく新しい物理インフォームドローショット学習法を提案する。
論文 参考訳(メタデータ) (2023-07-08T23:01:12Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
我々はDriPPと呼ばれる新しい統計点過程モデルを開発する。
我々は、このモデルのパラメータを推定するために、高速で原理化された予測最大化(EM)アルゴリズムを導出する。
標準MEGデータセットの結果から,我々の手法が事象関連ニューラルレスポンスを明らかにすることが示された。
論文 参考訳(メタデータ) (2021-12-08T13:07:21Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
長期間のメモリリカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端言語モデル(LM)は、実用アプリケーションではますます複雑で高価なものになりつつある。
現在の量子化法は、均一な精度に基づいており、量子化誤差に対するLMの異なる部分での様々な性能感度を考慮できない。
本稿では,新しい混合精度ニューラルネットワークLM量子化法を提案する。
論文 参考訳(メタデータ) (2021-11-29T12:24:02Z) - Physics-informed neural networks for myocardial perfusion MRI
quantification [3.318100528966778]
本研究では, 心筋灌流MR定量化のための物理インフォームドニューラルネットワーク(PINN)を提案する。
PINNは、基礎となる物理保存法則を尊重しながら、観測された拡散MRデータに適合するように訓練することができる。
論文 参考訳(メタデータ) (2020-11-25T16:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。