論文の概要: PlaNeRF: SVD Unsupervised 3D Plane Regularization for NeRF Large-Scale
Scene Reconstruction
- arxiv url: http://arxiv.org/abs/2305.16914v4
- Date: Sun, 5 Nov 2023 09:30:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-07 22:31:16.531051
- Title: PlaNeRF: SVD Unsupervised 3D Plane Regularization for NeRF Large-Scale
Scene Reconstruction
- Title(参考訳): PlaNeRF: SVD非教師型3次元平面規則化による大規模シーン再構成
- Authors: Fusang Wang, Arnaud Louys, Nathan Piasco, Moussab Bennehar, Luis
Rold\~ao, Dzmitry Tsishkou
- Abstract要約: ニューラル・ラジアンス・フィールド(NeRF)は2次元画像から3次元シーンを再構成し、新しいビュー・シンセサイザー(NVS)のためのカメラポーズを可能にする
NeRFはオーバーフィットからトレーニングの視点に苦しむことが多く、ジオメトリーの再構築は不十分である。
本稿では,RGB画像とセマンティックマップのみを用いて,NeRFの3次元構造を改善する手法を提案する。
- 参考スコア(独自算出の注目度): 2.2369578015657954
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Neural Radiance Fields (NeRF) enable 3D scene reconstruction from 2D images
and camera poses for Novel View Synthesis (NVS). Although NeRF can produce
photorealistic results, it often suffers from overfitting to training views,
leading to poor geometry reconstruction, especially in low-texture areas. This
limitation restricts many important applications which require accurate
geometry, such as extrapolated NVS, HD mapping and scene editing. To address
this limitation, we propose a new method to improve NeRF's 3D structure using
only RGB images and semantic maps. Our approach introduces a novel plane
regularization based on Singular Value Decomposition (SVD), that does not rely
on any geometric prior. In addition, we leverage the Structural Similarity
Index Measure (SSIM) in our loss design to properly initialize the volumetric
representation of NeRF. Quantitative and qualitative results show that our
method outperforms popular regularization approaches in accurate geometry
reconstruction for large-scale outdoor scenes and achieves SoTA rendering
quality on the KITTI-360 NVS benchmark.
- Abstract(参考訳): neural radiance fields (nerf) は2次元画像からの3次元シーン再構成を可能にする。
NeRFはフォトリアリスティックな結果を生み出すことができるが、しばしばトレーニングビューに過度に適合し、特に低テクスチュア領域において幾何再構成が不十分になる。
この制限は、外挿されたnvs、hdマッピング、シーン編集など、正確な幾何を必要とする多くの重要なアプリケーションを制限する。
そこで本研究では,RGB画像とセマンティックマップのみを用いて,NeRFの3次元構造を改善する手法を提案する。
本手法では,幾何的事前に依存しない特異値分解(SVD)に基づく新しい平面正規化を導入する。
さらに、損失設計における構造類似度指標(SSIM)を利用して、NeRFの体積表現を適切に初期化する。
KITTI-360 NVSベンチマークにおいて,大規模屋外シーンの正確な形状再構成において,本手法が一般的な正規化手法より優れ,SoTAレンダリング品質が向上していることを示す。
関連論文リスト
- PGSR: Planar-based Gaussian Splatting for Efficient and High-Fidelity Surface Reconstruction [37.14913599050765]
高忠実表面再構成を実現するために,高速平面型ガウススプラッティング再構成表現(PGSR)を提案する。
次に、大域的幾何精度を維持するために、一視点幾何、多視点測光、幾何正則化を導入する。
提案手法は3DGS法およびNeRF法よりも優れた高忠実度レンダリングと幾何再構成を維持しつつ,高速なトレーニングとレンダリングを実現する。
論文 参考訳(メタデータ) (2024-06-10T17:59:01Z) - GTR: Improving Large 3D Reconstruction Models through Geometry and Texture Refinement [51.97726804507328]
マルチビュー画像から3次元メッシュを再構成する手法を提案する。
提案手法は, 変圧器を用いたトリプレーンジェネレータとニューラルレージアンスフィールド(NeRF)モデルを用いた大規模再構成モデルから着想を得たものである。
論文 参考訳(メタデータ) (2024-06-09T05:19:24Z) - ReconFusion: 3D Reconstruction with Diffusion Priors [104.73604630145847]
本稿では,数枚の写真を用いて現実のシーンを再構成するReconFusionを提案する。
提案手法は,合成および多視点データセットに基づいて訓練された新規なビュー合成に先立って拡散を利用する。
本手法は,観測領域の外観を保ちながら,非拘束領域における現実的な幾何学とテクスチャを合成する。
論文 参考訳(メタデータ) (2023-12-05T18:59:58Z) - Improving Neural Radiance Fields with Depth-aware Optimization for Novel
View Synthesis [12.3338393483795]
SfMNeRFは,新規な視点の合成と3次元シーン形状の再構成を行う手法である。
SfMNeRFは、エピポーラ性、光度整合性、深さの滑らかさ、および3Dシーン構造を明示的に再構成するためにマッチ位置制約を用いる。
2つの公開データセットの実験では、SfMNeRFが最先端のアプローチを上回ることが示されている。
論文 参考訳(メタデータ) (2023-04-11T13:37:17Z) - Clean-NeRF: Reformulating NeRF to account for View-Dependent
Observations [67.54358911994967]
本稿では,複雑なシーンにおける3次元再構成と新しいビューレンダリングのためのクリーンネRFを提案する。
clean-NeRFはプラグインとして実装することができ、既存のNeRFベースのメソッドを追加入力なしですぐに利用することができる。
論文 参考訳(メタデータ) (2023-03-26T12:24:31Z) - Learning Neural Radiance Fields from Multi-View Geometry [1.1011268090482573]
画像に基づく3次元再構成のために,多視点幾何アルゴリズムとニューラルレージアンス場(NeRF)を組み合わせたMVG-NeRF(MVG-NeRF)というフレームワークを提案する。
NeRFは暗黙の3D表現の分野に革命をもたらした。
論文 参考訳(メタデータ) (2022-10-24T08:53:35Z) - NeuRIS: Neural Reconstruction of Indoor Scenes Using Normal Priors [84.66706400428303]
室内シーンを高品質に再現する新手法NeuRISを提案する。
NeuRISは、ニューラルネットワークのフレームワークにおいて、室内シーンの推定正規性を前者として統合している。
実験により、NeuRISは再建品質の点で最先端の手法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2022-06-27T19:22:03Z) - NeRFusion: Fusing Radiance Fields for Large-Scale Scene Reconstruction [50.54946139497575]
我々は,NeRF と TSDF をベースとした核融合技術の利点を組み合わせて,大規模再構築とフォトリアリスティックレンダリングを実現する手法であるNeRFusion を提案する。
我々は,大規模な屋内・小規模の両方の物体シーンにおいて,NeRFの最先端性を達成し,NeRFや他の最近の手法よりも大幅に高速に再現できることを実証した。
論文 参考訳(メタデータ) (2022-03-21T18:56:35Z) - Fast-GANFIT: Generative Adversarial Network for High Fidelity 3D Face
Reconstruction [76.1612334630256]
我々は、GAN(Generative Adversarial Networks)とDCNN(Deep Convolutional Neural Networks)の力を利用して、単一画像から顔のテクスチャと形状を再構築する。
3次元顔再構成を保存したフォトリアリスティックでアイデンティティに優れた結果を示し, 初めて, 高精度な顔テクスチャ再構成を実現する。
論文 参考訳(メタデータ) (2021-05-16T16:35:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。