論文の概要: Formal Modelling for Multi-Robot Systems Under Uncertainty
- arxiv url: http://arxiv.org/abs/2305.17018v2
- Date: Tue, 15 Aug 2023 14:01:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-16 16:39:24.755388
- Title: Formal Modelling for Multi-Robot Systems Under Uncertainty
- Title(参考訳): 不確実性下におけるマルチロボットシステムの形式モデリング
- Authors: Charlie Street, Masoumeh Mansouri, Bruno Lacerda
- Abstract要約: 我々は不確実性下でのマルチロボットシステムのフォーマリズムのモデル化についてレビューする。
計画、強化学習、モデルチェック、シミュレーションにどのように使用できるかについて議論する。
- 参考スコア(独自算出の注目度): 11.21074891465253
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purpose of Review: To effectively synthesise and analyse multi-robot
behaviour, we require formal task-level models which accurately capture
multi-robot execution. In this paper, we review modelling formalisms for
multi-robot systems under uncertainty, and discuss how they can be used for
planning, reinforcement learning, model checking, and simulation.
Recent Findings: Recent work has investigated models which more accurately
capture multi-robot execution by considering different forms of uncertainty,
such as temporal uncertainty and partial observability, and modelling the
effects of robot interactions on action execution. Other strands of work have
presented approaches for reducing the size of multi-robot models to admit more
efficient solution methods. This can be achieved by decoupling the robots under
independence assumptions, or reasoning over higher level macro actions.
Summary: Existing multi-robot models demonstrate a trade off between
accurately capturing robot dependencies and uncertainty, and being small enough
to tractably solve real world problems. Therefore, future research should
exploit realistic assumptions over multi-robot behaviour to develop smaller
models which retain accurate representations of uncertainty and robot
interactions; and exploit the structure of multi-robot problems, such as
factored state spaces, to develop scalable solution methods.
- Abstract(参考訳): 目的: マルチロボット動作を効果的に合成・解析するためには, マルチロボット実行を正確にキャプチャする形式的なタスクレベルモデルが必要である。
本稿では,不確実性下でのマルチロボットシステムのモデリング形式を概観し,計画,強化学習,モデルチェック,シミュレーションにどのように使用できるかについて議論する。
最近の研究は、時間的不確実性や部分的可観測性など、異なる形式の不確実性を考慮して、より正確にマルチロボットの実行を捉えるモデルを調査し、ロボットの相互作用がアクション実行に与える影響をモデル化している。
他の一連の研究は、より効率的な解法を認めるためにマルチロボットモデルのサイズを減らすアプローチを提示している。
これは、独立の前提の下でロボットを分離したり、より高いレベルのマクロアクションを推論することで達成できる。
結論: 既存のマルチロボットモデルは、ロボットの依存関係と不確実性を正確に捉えることと、現実世界の問題を解決するのに十分小さいことのトレードオフを示す。
そこで,本研究では,不確実性やロボットの相互作用を正確に表現したモデルを開発するために,複数ロボットの挙動に関する現実的な仮定を活用すべきである。
関連論文リスト
- Innate Motivation for Robot Swarms by Minimizing Surprise: From Simple Simulations to Real-World Experiments [6.21540494241516]
大規模モバイルマルチロボットシステムは、堅牢性とスケーラビリティの可能性が高いため、モノリシックロボットよりも有益である。
マルチロボットシステムのためのコントローラの開発は、対話の多さが予測し難く、モデル化が難しいため、難しい。
本質的にモチベーションは報酬の特定の定式化を避け、好奇心などの異なるドライバで作業しようとする。
Swarmのロボットケースのユニークな利点は、Swarmのメンバーがロボットの環境に飛び込み、自己参照ループでより活発な行動を引き起こすことができることである。
論文 参考訳(メタデータ) (2024-05-04T06:25:58Z) - Active Exploration in Bayesian Model-based Reinforcement Learning for Robot Manipulation [8.940998315746684]
ロボットアームのエンドタスクに対するモデルベース強化学習(RL)アプローチを提案する。
我々はベイズニューラルネットワークモデルを用いて、探索中に動的モデルに符号化された信念と情報の両方を確率論的に表現する。
実験により,ベイズモデルに基づくRL手法の利点が示された。
論文 参考訳(メタデータ) (2024-04-02T11:44:37Z) - General-purpose foundation models for increased autonomy in
robot-assisted surgery [4.155479231940454]
本稿では,ロボット支援手術における自律性向上を目指す。
手術ロボットは汎用モデルの利点を享受し,ロボット支援手術における自律性向上に向けた3つの指針を提供する。
論文 参考訳(メタデータ) (2024-01-01T06:15:16Z) - Distributional Instance Segmentation: Modeling Uncertainty and High
Confidence Predictions with Latent-MaskRCNN [77.0623472106488]
本稿では,潜在符号を用いた分散インスタンス分割モデルのクラスについて検討する。
ロボットピッキングへの応用として,高い精度を実現するための信頼性マスク手法を提案する。
本手法は,新たにリリースした曖昧なシーンのデータセットを含め,ロボットシステムにおける致命的なエラーを著しく低減できることを示す。
論文 参考訳(メタデータ) (2023-05-03T05:57:29Z) - A Capability and Skill Model for Heterogeneous Autonomous Robots [69.50862982117127]
機能モデリングは、異なるマシンが提供する機能を意味的にモデル化するための有望なアプローチと考えられている。
この貢献は、製造から自律ロボットの分野への能力モデルの適用と拡張の仕方について考察する。
論文 参考訳(メタデータ) (2022-09-22T10:13:55Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
本研究では,運動学や形態学など,異なるパラメータを持つ2つの異なるロボット間でポリシーを伝達する問題を考察する。
模倣学習手法を含む動作や状態遷移の分布を一致させることで、新しいポリシーを訓練する既存のアプローチは、最適な動作や/または状態分布が異なるロボットでミスマッチしているために失敗する。
本稿では,物理シミュレータに実装されたロボット政策伝達に連続的進化モデルを用いることで,$RevolveR$という新しい手法を提案する。
論文 参考訳(メタデータ) (2022-02-10T18:50:25Z) - Multi-Robot Collaborative Perception with Graph Neural Networks [6.383576104583731]
汎用グラフニューラルネットワーク(GNN)を提案する。
提案手法は,単眼深度推定やセマンティックセグメンテーションなどの多視点視覚認識問題に対処できることを示す。
論文 参考訳(メタデータ) (2022-01-05T18:47:07Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
強化学習手法は、重要な性能を達成できるが、同じロボットプラットフォームで収集される大量のトレーニングデータを必要とする。
私たちはそれを、さまざまなロボットプラットフォームで共有される共通の構造を捉えるモデルを見つけることを目標とする、数ショットのメタラーニング問題として定式化します。
我々は,400個のロボットを用いて,実ロボットピッキング作業とシミュレーションリーチの枠組みを実験的に評価した。
論文 参考訳(メタデータ) (2021-03-05T14:16:20Z) - Hyperparameters optimization for Deep Learning based emotion prediction
for Human Robot Interaction [0.2549905572365809]
インセプションモジュールをベースとした畳み込みニューラルネットワークアーキテクチャを提案する。
モデルは人型ロボットNAOにリアルタイムに実装され、モデルの堅牢性を評価する。
論文 参考訳(メタデータ) (2020-01-12T05:25:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。