論文の概要: Exploiting Abstract Meaning Representation for Open-Domain Question
Answering
- arxiv url: http://arxiv.org/abs/2305.17050v1
- Date: Fri, 26 May 2023 16:00:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-29 13:36:45.817433
- Title: Exploiting Abstract Meaning Representation for Open-Domain Question
Answering
- Title(参考訳): Open-Domain Question Answering における抽象的意味表現の展開
- Authors: Cunxiang Wang, Zhikun Xu, Qipeng Guo, Xiangkun Hu, Xuefeng Bai, Zheng
Zhang, Yue Zhang
- Abstract要約: 抽象的意味表現(AMR)グラフを用いて、複雑な意味情報を理解するモデルを支援する。
また,Natural Questions (NQ) と TriviaQA (TQ) の結果から,GST法が性能を著しく向上することを示した。
- 参考スコア(独自算出の注目度): 18.027908933572203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Open-Domain Question Answering (ODQA) task involves retrieving and
subsequently generating answers from fine-grained relevant passages within a
database. Current systems leverage Pretrained Language Models (PLMs) to model
the relationship between questions and passages. However, the diversity in
surface form expressions can hinder the model's ability to capture accurate
correlations, especially within complex contexts. Therefore, we utilize
Abstract Meaning Representation (AMR) graphs to assist the model in
understanding complex semantic information. We introduce a method known as
Graph-as-Token (GST) to incorporate AMRs into PLMs. Results from Natural
Questions (NQ) and TriviaQA (TQ) demonstrate that our GST method can
significantly improve performance, resulting in up to 2.44/3.17 Exact Match
score improvements on NQ/TQ respectively. Furthermore, our method enhances
robustness and outperforms alternative Graph Neural Network (GNN) methods for
integrating AMRs. To the best of our knowledge, we are the first to employ
semantic graphs in ODQA.
- Abstract(参考訳): Open-Domain Question Answering (ODQA)タスクでは、データベース内の詳細な関連するパスから回答を取り出し、生成する。
現在のシステムは、事前学習言語モデル(PLM)を利用して、質問と通過の関係をモデル化している。
しかし、曲面表現の多様性は、特に複雑な文脈において、正確な相関を捉えるモデルの能力を妨げうる。
そこで我々は抽象的意味表現(AMR)グラフを用いて複雑な意味情報の理解を支援する。
本稿では,AMRをPLMに組み込むGST(Graph-as-Token)手法を提案する。
Natural Questions (NQ) と TriviaQA (TQ) の結果、GST法は性能を著しく向上し、2.44/3.17 Exact Match score improve on NQ/TQ。
さらに,AMRを統合するためのグラフニューラルネットワーク(GNN)法よりも頑健性を高め,性能を向上する。
私たちの知る限りでは、ODQAでセマンティックグラフを使うのは初めてです。
関連論文リスト
- Graph-Augmented Relation Extraction Model with LLMs-Generated Support Document [7.0421339410165045]
本研究では,文レベルの関係抽出(RE)に対する新しいアプローチを提案する。
グラフニューラルネットワーク(GNN)とLarge Language Models(LLM)を統合し、コンテキストに富んだサポートドキュメントを生成する。
そこで,CrossREデータセットを用いて実験を行い,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-10-30T20:48:34Z) - SPARQL Generation: an analysis on fine-tuning OpenLLaMA for Question
Answering over a Life Science Knowledge Graph [0.0]
生命科学知識グラフを用いた質問応答のためのOpenLlama LLMの微調整戦略を評価する。
本稿では,既存のクエリのセットを知識グラフ上に拡張するためのエンドツーエンドデータ拡張手法を提案する。
また、意味のある変数名やインラインコメントなど、クエリにおける意味的な"キュー"の役割についても検討する。
論文 参考訳(メタデータ) (2024-02-07T07:24:01Z) - FusionMind -- Improving question and answering with external context
fusion [0.0]
事前学習言語モデル(LM)と知識グラフ(KG)を用いて,文脈知識が質問応答目標(QA)に与える影響を検討した。
知識事実のコンテキストを取り入れることで、パフォーマンスが大幅に向上することがわかった。
このことは、文脈的知識事実の統合が、質問応答のパフォーマンスを高める上でより影響があることを示唆している。
論文 参考訳(メタデータ) (2023-12-31T03:51:31Z) - ReasoningLM: Enabling Structural Subgraph Reasoning in Pre-trained
Language Models for Question Answering over Knowledge Graph [142.42275983201978]
本稿では,構造化推論を行うためのGNNを模倣するサブグラフ認識型自己認識機構を提案する。
また、モデルパラメータを2万のサブグラフで合成した質問に適応するための適応チューニング戦略も採用する。
実験により、ReasoningLMは、更新されたパラメータが少なく、トレーニングデータが少ない場合でも、最先端のモデルを大きなマージンで上回っていることが示された。
論文 参考訳(メタデータ) (2023-12-30T07:18:54Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - VQA-GNN: Reasoning with Multimodal Knowledge via Graph Neural Networks
for Visual Question Answering [79.22069768972207]
本稿では,VQA-GNNモデルを提案する。VQA-GNNは,非構造化知識と構造化知識の双方向融合を行い,統一知識表現を得る。
具体的には,シーングラフとコンセプトグラフを,QAコンテキストを表すスーパーノードを介して相互接続する。
課題2つのVQAタスクにおいて,本手法はVCRが3.2%,GQAが4.6%,強いベースラインVQAが3.2%向上し,概念レベルの推論を行う上での強みが示唆された。
論文 参考訳(メタデータ) (2022-05-23T17:55:34Z) - Question-Answer Sentence Graph for Joint Modeling Answer Selection [122.29142965960138]
我々は,質問文,質問文,回答文のペア間のスコアを計算するための最先端(SOTA)モデルを訓練し,統合する。
オンライン推論は、目に見えないクエリのAS2タスクを解決するために実行される。
論文 参考訳(メタデータ) (2022-02-16T05:59:53Z) - Dynamic Semantic Graph Construction and Reasoning for Explainable
Multi-hop Science Question Answering [50.546622625151926]
マルチホップQAのための説明可能性を得ながら,より有効な事実を活用できる新しいフレームワークを提案する。
a) tt AMR-SG,(a) tt AMR-SG,(a) tt AMR-SG,(a) tt AMR-SG,(c) グラフ畳み込みネットワーク(GCN)を利用した事実レベルの関係モデリング,(c) 推論過程の導出を行う。
論文 参考訳(メタデータ) (2021-05-25T09:14:55Z) - Knowledge Graph Question Answering using Graph-Pattern Isomorphism [0.0]
TeBaQAは、SPARQLクエリの基本グラフパターンからグラフ同型に基づいて、質問に答えることを学ぶ。
TeBaQAはQALD-8で最先端のパフォーマンスを達成し、QALD-9とLC-QuAD v1で同等の結果を提供する。
論文 参考訳(メタデータ) (2021-03-11T16:03:24Z) - Lightweight, Dynamic Graph Convolutional Networks for AMR-to-Text
Generation [56.73834525802723]
軽量な動的グラフ畳み込みネットワーク (LDGCN) を提案する。
LDGCNは入力グラフから高次情報を合成することにより、よりリッチな非局所的な相互作用をキャプチャする。
我々は,グループグラフの畳み込みと重み付き畳み込みに基づく2つの新しいパラメータ保存戦略を開発し,メモリ使用量とモデル複雑性を低減する。
論文 参考訳(メタデータ) (2020-10-09T06:03:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。