論文の概要: ArchRAG: Attributed Community-based Hierarchical Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2502.09891v1
- Date: Fri, 14 Feb 2025 03:28:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 19:47:35.621545
- Title: ArchRAG: Attributed Community-based Hierarchical Retrieval-Augmented Generation
- Title(参考訳): ArchRAG: 分散コミュニティベースの階層型検索型世代
- Authors: Shu Wang, Yixiang Fang, Yingli Zhou, Xilin Liu, Yuchi Ma,
- Abstract要約: Retrieval-Augmented Generation (RAG) は、外部知識を大規模言語モデルに統合するのに有効であることが証明されている。
我々は、Attributed Community-based Hierarchical RAG (ArchRAG)と呼ばれる新しいグラフベースのRAGアプローチを導入する。
属性付きコミュニティのための新しい階層型インデックス構造を構築し,効果的なオンライン検索手法を開発した。
- 参考スコア(独自算出の注目度): 16.204046295248546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) has proven effective in integrating external knowledge into large language models (LLMs) for question-answer (QA) tasks. The state-of-the-art RAG approaches often use the graph data as the external data since they capture the rich semantic information and link relationships between entities. However, existing graph-based RAG approaches cannot accurately identify the relevant information from the graph and also consume large numbers of tokens in the online retrieval process. To address these issues, we introduce a novel graph-based RAG approach, called Attributed Community-based Hierarchical RAG (ArchRAG), by augmenting the question using attributed communities, and also introducing a novel LLM-based hierarchical clustering method. To retrieve the most relevant information from the graph for the question, we build a novel hierarchical index structure for the attributed communities and develop an effective online retrieval method. Experimental results demonstrate that ArchRAG outperforms existing methods in terms of both accuracy and token cost.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG) は,質問応答(QA)タスクにおいて,外部知識を大規模言語モデル(LLM)に統合する上で有効であることが証明されている。
最先端のRAGアプローチは、リッチなセマンティック情報をキャプチャし、エンティティ間の関係をリンクするため、しばしばグラフデータを外部データとして使用する。
しかし、既存のグラフベースのRAGアプローチでは、グラフから関連する情報を正確に識別することができず、オンライン検索プロセスにおいて大量のトークンを消費する。
これらの課題に対処するために、属性付きコミュニティを用いた質問を増補し、新しいLLMベースの階層クラスタリング手法を導入することにより、Attributed Community-based Hierarchical RAG (ArchRAG)と呼ばれるグラフベースのRAGアプローチを導入する。
質問に対して最も関連性の高い情報をグラフから検索するために、属性付きコミュニティのための新しい階層的インデックス構造を構築し、効果的なオンライン検索方法を開発した。
実験の結果,ArchRAGは既存の手法よりも精度とトークンコストの両面で優れていた。
関連論文リスト
- RAKG:Document-level Retrieval Augmented Knowledge Graph Construction [10.013667560362565]
本稿では,自動文書レベルの知識グラフ構築の課題に焦点をあてる。
ドキュメントレベルの検索知識グラフ構築(RAKG)フレームワークを提案する。
論文 参考訳(メタデータ) (2025-04-14T02:47:23Z) - RGL: A Graph-Centric, Modular Framework for Efficient Retrieval-Augmented Generation on Graphs [58.10503898336799]
完全なRAGパイプラインをシームレスに統合するモジュラーフレームワークであるRAG-on-Graphs Library(RGL)を紹介した。
RGLは、さまざまなグラフフォーマットをサポートし、必須コンポーネントの最適化実装を統合することで、重要な課題に対処する。
評価の結果,RGLはプロトタイピングプロセスの高速化だけでなく,グラフベースRAGシステムの性能や適用性の向上も図っている。
論文 参考訳(メタデータ) (2025-03-25T03:21:48Z) - Retrieval-Augmented Generation with Hierarchical Knowledge [38.500133410610495]
グラフベースのRetrieval-Augmented Generation (RAG)法は,大規模言語モデル(LLM)の性能を大幅に向上させた。
既存のRAG法は、人間の認知において自然に生ずる階層的知識を適切に利用していない。
我々は階層的知識を利用してRAGシステムの意味的理解と構造的捕捉能力を高める新しいRAG手法、HiRAGを導入する。
論文 参考訳(メタデータ) (2025-03-13T08:22:31Z) - Optimizing open-domain question answering with graph-based retrieval augmented generation [5.2850605665217865]
我々は,広範囲のクエリータイプにまたがって,グラフベースの検索拡張生成システム (RAG) をベンチマークした。
従来のRAGメソッドは、ニュアンス付きマルチドキュメントタスクの処理に不足することが多い。
本稿では,グラフベースの合成とベクトルベースの検索技術を組み合わせた,費用対効果の高い新しい代替手段TREXを紹介する。
論文 参考訳(メタデータ) (2025-03-04T18:47:17Z) - G-OSR: A Comprehensive Benchmark for Graph Open-Set Recognition [54.45837774534411]
ノードレベルとグラフレベルの両方でグラフオープンセット認識(GOSR)手法を評価するベンチマークである textbfG-OSR を導入する。
結果は、現在のGOSR手法の一般化可能性と限界に関する重要な洞察を与える。
論文 参考訳(メタデータ) (2025-03-01T13:02:47Z) - PathRAG: Pruning Graph-based Retrieval Augmented Generation with Relational Paths [42.01377074786958]
Retrieval-augmented Generation (RAG)は、外部データベースから知識を取得することで、大規模言語モデル(LLM)の応答品質を改善する。
本稿では、インデックス化グラフから重要な関係経路を検索し、これらの経路をテキスト形式に変換してLLMを誘導するPathRAGを提案する。
PathRAGは、6つのデータセットと5つの評価次元で、最先端のベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2025-02-18T11:18:55Z) - Graph Foundation Models for Recommendation: A Comprehensive Survey [55.70529188101446]
大規模言語モデル(LLM)は自然言語を処理し、理解するために設計されており、どちらも非常に効果的で広く採用されている。
最近の研究はグラフ基礎モデル(GFM)に焦点を当てている。
GFM は GNN と LLM の強みを統合し,複雑な RS 問題をより効率的にモデル化する。
論文 参考訳(メタデータ) (2025-02-12T12:13:51Z) - GFM-RAG: Graph Foundation Model for Retrieval Augmented Generation [84.41557981816077]
本稿では,新しいグラフ基盤モデル (GFM) である GFM-RAG について紹介する。
GFM-RAGは、複雑なクエリ-知識関係をキャプチャするグラフ構造を理由とする、革新的なグラフニューラルネットワークによって実現されている。
効率とニューラルスケーリング法則との整合性を維持しつつ、最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2025-02-03T07:04:29Z) - CG-RAG: Research Question Answering by Citation Graph Retrieval-Augmented LLMs [9.718354494802002]
CG-RAG(Contextualized Graph Retrieval-Augmented Generation)は、グラフ構造に疎密な検索信号を統合する新しいフレームワークである。
まず、引用グラフの文脈グラフ表現を提案し、文書内および文書間の明示的および暗黙的な接続を効果的にキャプチャする。
次にLexical-Semantic Graph Retrieval(LeSeGR)を提案する。
第3に,検索したグラフ構造化情報を利用した文脈認識生成手法を提案する。
論文 参考訳(メタデータ) (2025-01-25T04:18:08Z) - QuIM-RAG: Advancing Retrieval-Augmented Generation with Inverted Question Matching for Enhanced QA Performance [1.433758865948252]
本研究では,RAG(Retrieval-Augmented Generation)システム構築のための新しいアーキテクチャを提案する。
RAGアーキテクチャは、ターゲット文書から応答を生成するために構築される。
本稿では,本システムにおける検索機構の新しいアプローチQuIM-RAGを紹介する。
論文 参考訳(メタデータ) (2025-01-06T01:07:59Z) - Retrieval-Augmented Generation with Graphs (GraphRAG) [84.29507404866257]
Retrieval-augmented Generation (RAG) は、追加情報を取得することによって下流タスクの実行を向上させる強力な技術である。
グラフは、その固有の「エッジで接続されたノード」の性質により、巨大な異種情報と関係情報を符号化する。
従来のRAGとは異なり、多種多様な形式とドメイン固有の関係知識のようなグラフ構造化データのユニークさは、異なるドメインでGraphRAGを設計する際、ユニークで重要な課題を生じさせる。
論文 参考訳(メタデータ) (2024-12-31T06:59:35Z) - Graph Retrieval-Augmented Generation: A Survey [28.979898837538958]
Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)の課題に再トレーニングを必要とせずに対処することに成功した。
本稿では,GraphRAGの方法論について概観する。
Graph-Based Indexing、Graph-Guided Retrieval、Graph-Enhanced Generationを含むGraphRAGワークフローを形式化する。
論文 参考訳(メタデータ) (2024-08-15T12:20:24Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に着目し, 完全性, 幻覚, 不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering [115.72130322143275]
REAR(Relevance-Aware Retrieval-augmented approach for open-domain Question answering, QA)
我々は,特殊な設計のアセスメントモジュールを組み込むことで,LLMベースのRAGシステムのための新しいアーキテクチャを開発する。
オープンドメインの4つのQAタスクの実験では、REARは以前の競争力のあるRAGアプローチよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-02-27T13:22:51Z) - Exploiting Abstract Meaning Representation for Open-Domain Question
Answering [18.027908933572203]
抽象的意味表現(AMR)グラフを用いて、複雑な意味情報を理解するモデルを支援する。
また,Natural Questions (NQ) と TriviaQA (TQ) の結果から,GST法が性能を著しく向上することを示した。
論文 参考訳(メタデータ) (2023-05-26T16:00:16Z) - Graph Learning based Recommender Systems: A Review [111.43249652335555]
グラフ学習ベースのレコメンダーシステム(GLRS)は、高度なグラフ学習アプローチを使用して、ユーザーの好みと意図、および推奨項目の特性をモデル化します。
本稿では,グラフに基づく表現から重要な知識を抽出し,レコメンデーションの正確性,信頼性,説明性を向上する方法について論じることにより,GLRSの体系的なレビューを行う。
論文 参考訳(メタデータ) (2021-05-13T14:50:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。