論文の概要: A Framework for Incentivized Collaborative Learning
- arxiv url: http://arxiv.org/abs/2305.17052v1
- Date: Fri, 26 May 2023 16:00:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-29 13:37:25.345896
- Title: A Framework for Incentivized Collaborative Learning
- Title(参考訳): インセンティブ付き協調学習のための枠組み
- Authors: Xinran Wang, Qi Le, Ahmad Faraz Khan, Jie Ding, Ali Anwar
- Abstract要約: 我々は、協調学習のインセンティブとなる一般的なフレームワークであるICLを提案する。
連合学習,支援学習,マルチアームバンディットの特定の症例に対するICLの広範な適用性を示す。
- 参考スコア(独自算出の注目度): 15.44652093599549
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collaborations among various entities, such as companies, research labs, AI
agents, and edge devices, have become increasingly crucial for achieving
machine learning tasks that cannot be accomplished by a single entity alone.
This is likely due to factors such as security constraints, privacy concerns,
and limitations in computation resources. As a result, collaborative learning
(CL) research has been gaining momentum. However, a significant challenge in
practical applications of CL is how to effectively incentivize multiple
entities to collaborate before any collaboration occurs. In this study, we
propose ICL, a general framework for incentivized collaborative learning, and
provide insights into the critical issue of when and why incentives can improve
collaboration performance. Furthermore, we show the broad applicability of ICL
to specific cases in federated learning, assisted learning, and multi-armed
bandit with both theory and experimental results.
- Abstract(参考訳): 企業、研究所、AIエージェント、エッジデバイスといったさまざまなエンティティ間のコラボレーションは、単一のエンティティだけでは達成できない機械学習タスクを達成するためにますます重要になっている。
これはおそらく、セキュリティの制約、プライバシの懸念、計算リソースの制限などによるものだ。
その結果,協調学習(CL)研究が勢いを増している。
しかし、CLの実践的応用における重要な課題は、コラボレーションが起こる前に複数のエンティティを効果的に協調させる方法である。
本研究では,協調学習をインセンティブ化するための汎用フレームワークであるiclを提案し,インセンティブがコラボレーションパフォーマンスを向上させる理由と時期に関する批判的問題に対する洞察を提供する。
さらに,連合学習,支援学習,多腕バンディットにおけるiclの応用可能性について,理論と実験の両方から検討した。
関連論文リスト
- TeamLoRA: Boosting Low-Rank Adaptation with Expert Collaboration and Competition [61.91764883512776]
我々は,専門家のためのコラボレーション・コンペティション・モジュールからなる,革新的なPEFT手法であるTeamLoRAを紹介する。
そうすることで、TeamLoRAは専門家を"チーム"として内部のコラボレーションや競争に結び付け、マルチタスク学習のためのより高速で正確なPEFTパラダイムを可能にします。
論文 参考訳(メタデータ) (2024-08-19T09:58:53Z) - Collaborative Active Learning in Conditional Trust Environment [1.3846014191157405]
複数の協力者が既存のデータやモデルを開示することなく、組み合わせた機械学習機能を活用して新しいドメインを探索するパラダイムである、協調型アクティブラーニングについて検討する。
このコラボレーションは、(a)直接モデルとデータ開示の必要性を排除し、プライバシとセキュリティの懸念に対処する、(b)直接データ交換なしで異なるデータソースとインサイトの使用を可能にする、(c)共有ラベリングコストを通じてコスト効率とリソース効率を促進する、といういくつかの利点を提供する。
論文 参考訳(メタデータ) (2024-03-27T10:40:27Z) - A Review of Cooperation in Multi-agent Learning [5.334450724000142]
マルチエージェント学習(MAL)における協調は、多くの分野の共通点におけるトピックである。
本稿では,マルチエージェント学習の基本概念,問題設定,アルゴリズムについて概説する。
論文 参考訳(メタデータ) (2023-12-08T16:42:15Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corexは,大規模言語モデルを自律エージェントに変換する,新たな汎用戦略スイートだ。
人間の振る舞いにインスパイアされたCorexは、Debate、Review、Retrieveモードといった多様なコラボレーションパラダイムによって構成されている。
我々は,複数のLDMを協調的に演奏することで,既存の手法に比べて性能が著しく向上することが実証された。
論文 参考訳(メタデータ) (2023-09-30T07:11:39Z) - NCL++: Nested Collaborative Learning for Long-Tailed Visual Recognition [63.90327120065928]
本研究では,Nested Collaborative Learning (NCL++)を提案する。
長期学習における協調学習を実現するために,バランスの取れたオンライン蒸留を提案する。
混乱するカテゴリにおける細かな識別能力を改善するために,さらにハードカテゴリーマイニングを提案する。
論文 参考訳(メタデータ) (2023-06-29T06:10:40Z) - Exploring Interactions and Regulations in Collaborative Learning: An
Interdisciplinary Multimodal Dataset [40.193998859310156]
本稿では,協調的プロセスにおいて,協調的プロセスにおける規制が相互作用にどのように影響するかを検討するために,認知的および感情的トリガーを備えた新しいマルチモーダルデータセットを提案する。
意図的な介入を伴う学習課題を15歳以上の高校生に設計・割り当てする。
注記された感情、身体のジェスチャー、およびそれらの相互作用の分析は、デザインされた治療を伴うデータセットが、協調学習における規制の瞬間を効果的に調査できることを示唆している。
論文 参考訳(メタデータ) (2022-10-11T12:56:36Z) - Distributed Deep Learning in Open Collaborations [49.240611132653456]
協調学習に特化して設計された新しいアルゴリズムフレームワークを提案する。
現実的な条件下でのSwaVとALBERTの事前学習に対するアプローチの有効性を実証し,コストのごく一部で従来の設定に匹敵する性能を実現する。
論文 参考訳(メタデータ) (2021-06-18T16:23:13Z) - Practical One-Shot Federated Learning for Cross-Silo Setting [114.76232507580067]
ワンショット・フェデレーション・ラーニングは、クロスサイロ環境でフェデレーション・ラーニングを適用するための有望なアプローチである。
本稿では,FedKTという,実践的なワンショットフェデレーション学習アルゴリズムを提案する。
知識伝達技術を利用することで、FedKTは任意の分類モデルに適用でき、フレキシブルに差分プライバシー保証を達成できる。
論文 参考訳(メタデータ) (2020-10-02T14:09:10Z) - Joint Contrastive Learning with Infinite Possibilities [114.45811348666898]
本稿では,新しい確率論的モデリングによるコントラスト学習における最近の発展の有用性について考察する。
コントラスト学習(Joint Contrastive Learning, JCL)という,コントラスト学習の特定の形態を導出する。
論文 参考訳(メタデータ) (2020-09-30T16:24:21Z) - Assisted Learning: A Framework for Multi-Organization Learning [16.6491720806269]
我々は、組織のアルゴリズム、データ、あるいはタスクを明らかにすることなく、教師付き学習タスクで互いに助け合うための支援学習フレームワークを紹介します。
組織は、タスク固有の統計を放送し、他の人のフィードバックを1つ以上のイテレーションに取り入れ、最終的に予測性能を改善することで支援を求める。
論文 参考訳(メタデータ) (2020-04-01T16:54:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。