論文の概要: NeuManifold: Neural Watertight Manifold Reconstruction with Efficient
and High-Quality Rendering Support
- arxiv url: http://arxiv.org/abs/2305.17134v2
- Date: Tue, 7 Nov 2023 00:47:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-08 19:30:49.851477
- Title: NeuManifold: Neural Watertight Manifold Reconstruction with Efficient
and High-Quality Rendering Support
- Title(参考訳): NeuManifold: 効率的かつ高品質なレンダリング支援によるニューラルウォータータイトマニフォールド再構成
- Authors: Xinyue Wei, Fanbo Xiang, Sai Bi, Anpei Chen, Kalyan Sunkavalli,
Zexiang Xu, Hao Su
- Abstract要約: マルチビュー入力画像から高品質な水密多様体メッシュを生成する手法を提案する。
提案手法は両世界の利点を組み合わせ, ニューラルネットワークから得られる幾何学と, よりコンパクトな神経テクスチャ表現を最適化する。
- 参考スコア(独自算出の注目度): 45.68296352822415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a method for generating high-quality watertight manifold meshes
from multi-view input images. Existing volumetric rendering methods are robust
in optimization but tend to generate noisy meshes with poor topology.
Differentiable rasterization-based methods can generate high-quality meshes but
are sensitive to initialization. Our method combines the benefits of both
worlds; we take the geometry initialization obtained from neural volumetric
fields, and further optimize the geometry as well as a compact neural texture
representation with differentiable rasterizers. Through extensive experiments,
we demonstrate that our method can generate accurate mesh reconstructions with
faithful appearance that are comparable to previous volume rendering methods
while being an order of magnitude faster in rendering. We also show that our
generated mesh and neural texture reconstruction is compatible with existing
graphics pipelines and enables downstream 3D applications such as simulation.
Project page: https://sarahweiii.github.io/neumanifold/
- Abstract(参考訳): マルチビュー入力画像から高品質な水密多様体メッシュを生成する手法を提案する。
既存のボリュームレンダリング手法は最適化には堅牢だが、トポロジに乏しいノイズの多いメッシュを生成する傾向がある。
異なるラスタライゼーションに基づく手法は高品質なメッシュを生成することができるが、初期化に敏感である。
本手法は両世界の利点を組み合わせ, ニューラル体積場から得られる幾何初期化を考慮し, さらに, ラスタライザを用いたコンパクトなニューラルテクスチャ表現を最適化する。
広範な実験により,従来のボリュームレンダリング法に匹敵する忠実な外観のメッシュ再構成を,レンダリングの桁違いな速度で生成できることを実証した。
また、生成したメッシュとニューラルテクスチャの再構成が既存のグラフィックスパイプラインと互換性があることを示し、シミュレーションのような下流3Dアプリケーションを可能にする。
プロジェクトページ: https://sarahweiii.github.io/neumanifold/
関連論文リスト
- LinPrim: Linear Primitives for Differentiable Volumetric Rendering [53.780682194322225]
線形プリミティブ-オクタヘドラとテトラヘドラ-ボスに基づく2つの新しいシーン表現を導入する。
この定式化は、ダウンストリームアプリケーションのオーバーヘッドを最小限にする、標準メッシュベースのツールと自然に一致します。
再現精度を向上するためにプリミティブを減らしながら,最先端のボリューム手法に匹敵する性能を示す。
論文 参考訳(メタデータ) (2025-01-27T18:49:38Z) - 3D Gaussian Splatting with Normal Information for Mesh Extraction and Improved Rendering [8.59572577251833]
ガウス関数から推定される符号距離関数の勾配を用いた新しい正規化法を提案する。
我々は、Mip-NeRF360、Tamps and Temples、Deep-Blendingなどのデータセットに対するアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2025-01-14T18:40:33Z) - GausSurf: Geometry-Guided 3D Gaussian Splatting for Surface Reconstruction [79.42244344704154]
GausSurfは、テクスチャリッチな領域におけるマルチビュー一貫性と、シーンのテクスチャレスな領域における通常の事前の幾何学的ガイダンスを採用している。
本手法は,再現性や計算時間の観点から,最先端の手法を超越した手法である。
論文 参考訳(メタデータ) (2024-11-29T03:54:54Z) - Delicate Textured Mesh Recovery from NeRF via Adaptive Surface
Refinement [78.48648360358193]
画像からテクスチャ化された表面メッシュを生成する新しいフレームワークを提案する。
我々のアプローチは、NeRFを用いて幾何学とビュー依存の外観を効率的に初期化することから始まります。
ジオメトリと共同で外観を洗練し、テクスチャ画像に変換してリアルタイムレンダリングします。
論文 参考訳(メタデータ) (2023-03-03T17:14:44Z) - Multi-View Mesh Reconstruction with Neural Deferred Shading [0.8514420632209809]
最先端の手法では、ニューラルサーフェス表現とニューラルシェーディングの両方を用いる。
曲面を三角形メッシュとして表現し、三角形の描画とニューラルシェーディングを中心に、微分可能なレンダリングパイプラインを構築します。
パブリックな3次元再構成データセットを用いてランタイムの評価を行い、最適化において従来のベースラインの復元精度を上回りながら、従来のベースラインの再構築精度に適合できることを示す。
論文 参考訳(メタデータ) (2022-12-08T16:29:46Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
多視点画像観測による材料と照明の協調最適化手法を提案する。
従来のグラフィックスエンジンにデプロイ可能な,空間的に変化する材料と環境を備えたメッシュを活用します。
論文 参考訳(メタデータ) (2021-11-24T13:58:20Z) - Learning Deformable Tetrahedral Meshes for 3D Reconstruction [78.0514377738632]
学習に基づく3次元再構成に対応する3次元形状表現は、機械学習とコンピュータグラフィックスにおいてオープンな問題である。
ニューラル3D再構成に関するこれまでの研究は、利点だけでなく、ポイントクラウド、ボクセル、サーフェスメッシュ、暗黙の関数表現といった制限も示していた。
Deformable Tetrahedral Meshes (DefTet) を, ボリューム四面体メッシュを再構成問題に用いるパラメータ化として導入する。
論文 参考訳(メタデータ) (2020-11-03T02:57:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。