論文の概要: Input-Aware Dynamic Timestep Spiking Neural Networks for Efficient
In-Memory Computing
- arxiv url: http://arxiv.org/abs/2305.17346v1
- Date: Sat, 27 May 2023 03:01:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-30 20:16:17.155259
- Title: Input-Aware Dynamic Timestep Spiking Neural Networks for Efficient
In-Memory Computing
- Title(参考訳): 入力型動的タイムステップスパイクニューラルネットワークによる効率的なインメモリコンピューティング
- Authors: Yuhang Li, Abhishek Moitra, Tamar Geller, Priyadarshini Panda
- Abstract要約: Spiking Neural Networks (SNN) はスパースとバイナリスパイク情報を処理できることから、広く研究の関心を集めている。
IMCハードウェアで使用される時間ステップの数に応じて,SNNのエネルギーコストとレイテンシが線形にスケールすることを示す。
入力対応動的時間ステップSNN(DT-SNN)を提案し,SNNの効率を最大化する。
- 参考スコア(独自算出の注目度): 7.738130109655604
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spiking Neural Networks (SNNs) have recently attracted widespread research
interest as an efficient alternative to traditional Artificial Neural Networks
(ANNs) because of their capability to process sparse and binary spike
information and avoid expensive multiplication operations. Although the
efficiency of SNNs can be realized on the In-Memory Computing (IMC)
architecture, we show that the energy cost and latency of SNNs scale linearly
with the number of timesteps used on IMC hardware. Therefore, in order to
maximize the efficiency of SNNs, we propose input-aware Dynamic Timestep SNN
(DT-SNN), a novel algorithmic solution to dynamically determine the number of
timesteps during inference on an input-dependent basis. By calculating the
entropy of the accumulated output after each timestep, we can compare it to a
predefined threshold and decide if the information processed at the current
timestep is sufficient for a confident prediction. We deploy DT-SNN on an IMC
architecture and show that it incurs negligible computational overhead. We
demonstrate that our method only uses 1.46 average timesteps to achieve the
accuracy of a 4-timestep static SNN while reducing the energy-delay-product by
80%.
- Abstract(参考訳): Spiking Neural Networks(SNN)は、スパースとバイナリスパイク情報を処理し、高価な乗算操作を避ける能力により、従来のニューラルネットワーク(ANN)に代わる効率的な代替手段として、最近広く研究の関心を集めている。
In-Memory Computing (IMC) アーキテクチャではSNNの効率が向上するが、SNNのエネルギーコストとレイテンシはIMCハードウェアで使用される時間ステップの数と線形にスケールすることを示す。
そこで本研究では,SNNの効率を最大化するために,入力依存に基づく推論中の時間ステップ数を動的に決定する新しいアルゴリズムである,入力対応動的時間ステップSNN(DT-SNN)を提案する。
各タイムステップ後の累積出力のエントロピーを計算することで、予め定義された閾値と比較し、現在のタイムステップで処理された情報が自信ある予測に十分かどうかを判断できる。
IMCアーキテクチャ上にDT-SNNをデプロイし,計算オーバーヘッドが無視できることを示す。
提案手法は,4段階静的SNNの精度向上のために平均時間1.46しか使用せず,エネルギー遅延係数を80%低減することを示した。
関連論文リスト
- Scalable Mechanistic Neural Networks [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
元のメカニスティックニューラルネットワーク (MNN) を再構成することにより、計算時間と空間の複雑さを、それぞれ、列長に関して立方体と二次体から線形へと減少させる。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - Towards Low-latency Event-based Visual Recognition with Hybrid Step-wise Distillation Spiking Neural Networks [50.32980443749865]
スパイキングニューラルネットワーク(SNN)は、低消費電力と高い生物性のために大きな注目を集めている。
現在のSNNは、ニューロモルフィックデータセットの正確性とレイテンシのバランスをとるのに苦労している。
ニューロモルフィックデータセットに適したステップワイド蒸留法(HSD)を提案する。
論文 参考訳(メタデータ) (2024-09-19T06:52:34Z) - Are SNNs Truly Energy-efficient? $-$ A Hardware Perspective [7.539212567508529]
スパイキングニューラルネットワーク(SNN)は、そのエネルギー効率のよい機械学習能力に注目を集めている。
本研究では,SATAとSpikeSimという,大規模SNN推論のための2つのハードウェアベンチマークプラットフォームについて検討する。
論文 参考訳(メタデータ) (2023-09-06T22:23:22Z) - SEENN: Towards Temporal Spiking Early-Exit Neural Networks [26.405775809170308]
スパイキングニューラルネットワーク(SNN)は、最近、従来のニューラルネットワーク(ANN)の生物学的にもっともらしい代替品として人気が高まっている。
本研究では,SNNにおける時間経過の微調整について検討する。
時間ステップ数を動的に調整することにより、SEENNは推論中の平均時間ステップ数を著しく削減する。
論文 参考訳(メタデータ) (2023-04-02T15:57:09Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - SpikeSim: An end-to-end Compute-in-Memory Hardware Evaluation Tool for
Benchmarking Spiking Neural Networks [4.0300632886917]
SpikeSimは、IMCマップされたSNNの現実的なパフォーマンス、エネルギ、レイテンシ、領域評価を実現するツールである。
神経モジュールの面積の1.24倍と10倍に減少するSNNトポロジカルな変化と全エネルギー・遅延生成値を提案する。
論文 参考訳(メタデータ) (2022-10-24T01:07:17Z) - Examining the Robustness of Spiking Neural Networks on Non-ideal
Memristive Crossbars [4.184276171116354]
ニューラルネットワークの低消費電力代替としてスパイキングニューラルネットワーク(SNN)が登場している。
本研究では,SNNの性能に及ぼすクロスバー非理想性と本質性の影響について検討した。
論文 参考訳(メタデータ) (2022-06-20T07:07:41Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Can Deep Neural Networks be Converted to Ultra Low-Latency Spiking
Neural Networks? [3.2108350580418166]
スパイクニューラルネットワーク(SNN)は、時間とともに分散されたバイナリスパイクを介して動作する。
SNNのためのSOTAトレーニング戦略は、非スパイキングディープニューラルネットワーク(DNN)からの変換を伴う
そこで本研究では,DNNと変換SNNの誤差を最小限に抑えながら,これらの分布を正確にキャプチャする新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-22T18:47:45Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - You Only Spike Once: Improving Energy-Efficient Neuromorphic Inference
to ANN-Level Accuracy [51.861168222799186]
スパイキングニューラルネットワーク(英: Spiking Neural Networks、SNN)は、神経型ネットワークの一種である。
SNNはスパースであり、重量はごくわずかであり、通常、より電力集約的な乗算および累積演算の代わりに追加操作のみを使用する。
本研究では,TTFS符号化ニューロモルフィックシステムの限界を克服することを目的としている。
論文 参考訳(メタデータ) (2020-06-03T15:55:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。