Demonstration of a programmable optical lattice atom interferometer
- URL: http://arxiv.org/abs/2305.17603v2
- Date: Mon, 28 Oct 2024 22:56:40 GMT
- Title: Demonstration of a programmable optical lattice atom interferometer
- Authors: Catie LeDesma, Kendall Mehling, Jieqiu Shao, John Drew Wilson, Penina Axelrad, Marco Nicotra, Dana Z. Anderson, Murray Holland,
- Abstract summary: We show the ability to control the atoms by imaging and reconstructing the wavefunction at many stages during its cycle.
An acceleration signal is applied and the resulting performance is seen to be close to the optimum possible.
Our methodology of machine design enables the sensor to be reconfigurable on the fly, and when scaled up, offers the potential to make state-of-the art inertial and gravitational sensors.
- Score: 0.0
- License:
- Abstract: Performing interferometry in an optical lattice formed by standing waves of light offers potential advantages over its free-space equivalents since the atoms can be confined and manipulated by the optical potential. We demonstrate such an interferometer in a one dimensional lattice and show the ability to control the atoms by imaging and reconstructing the wavefunction at many stages during its cycle. An acceleration signal is applied and the resulting performance is seen to be close to the optimum possible for the time-space area enclosed according to quantum theory. Our methodology of machine design enables the sensor to be reconfigurable on the fly, and when scaled up, offers the potential to make state-of-the art inertial and gravitational sensors that will have a wide range of potential applications.
Related papers
- Optimal displacement detection of arbitrarily-shaped levitated dielectric objects using optical radiation [7.584203078337655]
We numerically implement a method based on Fisher information that is applicable to suspended particles of arbitrary geometry.
We demonstrate the agreement between our method and prior methods employed for spherical particles, both in the Rayleigh and Lorentz-Mie regimes.
arXiv Detail & Related papers (2024-09-01T17:14:52Z) - Quantum Imaging Using Spatially Entangled Photon Pairs from a Nonlinear Metasurface [0.4188114563181615]
metasurfaces with subwavelength thickness were recently established as versatile platforms for the enhanced and tailorable generation of entangled photon pairs.
Here, we demonstrate the unique benefits and practical potential of nonlinear metasurfaces for quantum imaging at infrared wavelengths.
We reconstruct the images of 2D objects using just a 1D detector array in the idler path and a bucket detector in the signal path, by recording the dependencies of photon coincidences on the pump wavelength.
arXiv Detail & Related papers (2024-08-06T02:25:34Z) - In-situ-tunable spin-spin interactions in a Penning trap with in-bore
optomechanics [41.94295877935867]
We present an optomechanical system for in-situ tuning of the coherent spin-motion and spin-spin interaction strength.
We characterize the system using measurements of the induced mean-field spin precession.
These experiments show approximately a $times2$ variation in the ratio of the coherent to incoherent interaction strength.
arXiv Detail & Related papers (2024-01-31T11:00:39Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Optical-domain spectral super-resolution via a quantum-memory-based
time-frequency processor [0.0]
We exploit the full spectral information of the optical field in order to beat the Rayleigh limit in spectroscopy.
We employ an optical quantum memory with spin-wave storage and an embedded processing capability to implement a time-inversion interferometer for input light.
Our tailored measurement achieves a resolution of 15 kHz and requires 20 times less photons than a corresponding Rayleigh-limited conventional method.
arXiv Detail & Related papers (2021-06-08T15:35:41Z) - Inverse-designed photon extractors for optically addressable defect
qubits [48.7576911714538]
Inverse-design optimization of photonic devices enables unprecedented flexibility in tailoring critical parameters of a spin-photon interface.
Inverse-designed devices will enable realization of scalable arrays of single-photon emitters, rapid characterization of new quantum emitters, sensing and efficient heralded entanglement schemes.
arXiv Detail & Related papers (2020-07-24T04:30:14Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Spectrally reconfigurable quantum emitters enabled by optimized fast
modulation [42.39394379814941]
Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is attractive for realizing such applications on-chip.
We propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission.
Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.
arXiv Detail & Related papers (2020-03-27T18:24:35Z) - Optical levitation using broadband light [0.0]
We demonstrate a method for the creation of arbitrary optical tweezer potentials using a superluminescent diode combined with the chromatic aberration of a lens.
A tunable filter, typically used for ultra-fast laser pulse shaping, allows us to manipulate the broad spectral profile and therefore the optical tweezer potentials formed by focusing of this light.
arXiv Detail & Related papers (2020-02-11T19:55:35Z) - Optical imprinting of superlattices in two-dimensional materials [0.0]
We use an optical method of shining circularly polarized and periodic laser fields to imprint structures in two-dimensional electronic systems.
By changing the configuration of the optical field, we synthesize various lattice structures with different spatial symmetry, periodicity, and strength.
arXiv Detail & Related papers (2019-12-30T19:00:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.