Optimal displacement detection of arbitrarily-shaped levitated dielectric objects using optical radiation
- URL: http://arxiv.org/abs/2409.00782v1
- Date: Sun, 1 Sep 2024 17:14:52 GMT
- Title: Optimal displacement detection of arbitrarily-shaped levitated dielectric objects using optical radiation
- Authors: Shaun Laing, Shelby Klomp, George Winstone, Alexey Grinin, Andrew Dana, Zhiyuan Wang, Kevin Seca Widyatmodjo, James Bateman, Andrew A. Geraci,
- Abstract summary: We numerically implement a method based on Fisher information that is applicable to suspended particles of arbitrary geometry.
We demonstrate the agreement between our method and prior methods employed for spherical particles, both in the Rayleigh and Lorentz-Mie regimes.
- Score: 7.584203078337655
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optically-levitated dielectric objects are promising for precision force, acceleration, torque, and rotation sensing due to their extreme environmental decoupling. While many levitated opto-mechanics experiments employ spherical objects, for some applications non-spherical geometries offer advantages. For example, rod-shaped or dumbbell shaped particles have been demonstrated for torque and rotation sensing and high aspect ratio plate-like particles can exhibit reduced photon recoil heating and may be useful for high-frequency gravitational wave detection or as high bandwidth accelerometers. To achieve optimal sensitivity, cooling, and quantum control in these systems, it is beneficial to achieve optimal displacement detection using scattered light. We describe and numerically implement a method based on Fisher information that is applicable to suspended particles of arbitrary geometry. We demonstrate the agreement between our method and prior methods employed for spherical particles, both in the Rayleigh and Lorentz-Mie regimes. As practical examples we analyze the optical detection limits of an optically-levitated high-aspect-ratio disc-like dielectric object and a rod-shaped object for configurations recently realized in experimental work.
Related papers
- Tunable on-chip optical traps for levitating particles based on
single-layer metasurface [0.25128687379089687]
We experimentally demonstrated that a metasurface which forms two diffraction-limited focal points with a high numerical aperture can generate tunable optical potential wells.
Two nanoparticles were levitated in double potential wells for hours, which could be used for investigating the levitated particles nonlinear dynamics, thermal dynamics, and optical binding.
arXiv Detail & Related papers (2024-01-16T22:00:53Z) - Experimental Observation of Earth's Rotation with Quantum Entanglement [0.0]
We present a table-top experiment using maximally path-entangled quantum states of light in an interferometer with an area of 715 m$2$.
The achieved sensitivity of 5 $mu$rad/s constitutes the highest rotation resolution ever achieved with optical quantum interferometers.
arXiv Detail & Related papers (2023-10-25T18:01:23Z) - Oscillating Fields, Emergent Gravity and Particle Traps [55.2480439325792]
We study the large-scale dynamics of charged particles in a rapidly oscillating field and formulate its classical and quantum effective theory description.
Remarkably, the action models the effects of general relativity on the motion of nonrelativistic particles, with the values of the emergent curvature and speed of light determined by the field spatial distribution and frequency.
arXiv Detail & Related papers (2023-10-03T18:00:02Z) - Demonstration of a programmable optical lattice atom interferometer [0.0]
We show the ability to control the atoms by imaging and reconstructing the wavefunction at many stages during its cycle.
An acceleration signal is applied and the resulting performance is seen to be close to the optimum possible.
Our methodology of machine design enables the sensor to be reconfigurable on the fly, and when scaled up, offers the potential to make state-of-the art inertial and gravitational sensors.
arXiv Detail & Related papers (2023-05-28T01:16:31Z) - Quantum theory of light interaction with a Lorenz-Mie particle: Optical
detection and three-dimensional ground-state cooling [0.0]
Hamiltonian describes fundamental coupling between photons and center-of-mass phonons, including Stokes and anti-Stokes processes.
We show how to evaluate laser recoil rates and the information radiation patterns in the presence of a focused laser beam.
arXiv Detail & Related papers (2022-12-09T13:11:29Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Estimating the concentration of chiral media with bright squeezed light [77.34726150561087]
We quantify the performance of Gaussian probes in estimating the concentration of chiral analytes.
Four-fold precision enhancement is achievable using state-of-the-art squeezing levels and intensity measurements.
arXiv Detail & Related papers (2022-08-21T17:18:10Z) - A background-free optically levitated charge sensor [50.591267188664666]
We introduce a new technique to model and eliminate dipole moment interactions limiting the performance of sensors employing levitated objects.
As a demonstration, this is applied to the search for unknown charges of a magnitude much below that of an electron.
As a by-product of the technique, the electromagnetic properties of the levitated objects can also be measured on an individual basis.
arXiv Detail & Related papers (2021-12-20T08:16:28Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Gravity Probe Spin: Prospects for measuring general-relativistic
precession of intrinsic spin using a ferromagnetic gyroscope [51.51258642763384]
An experimental test at the intersection of quantum physics and general relativity is proposed.
The behavior of intrinsic spin in spacetime is an experimentally open question.
A measurement is possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth.
arXiv Detail & Related papers (2020-06-16T17:18:44Z) - Optical levitation using broadband light [0.0]
We demonstrate a method for the creation of arbitrary optical tweezer potentials using a superluminescent diode combined with the chromatic aberration of a lens.
A tunable filter, typically used for ultra-fast laser pulse shaping, allows us to manipulate the broad spectral profile and therefore the optical tweezer potentials formed by focusing of this light.
arXiv Detail & Related papers (2020-02-11T19:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.