論文の概要: Breaking Language Barriers with a LEAP: Learning Strategies for Polyglot
LLMs
- arxiv url: http://arxiv.org/abs/2305.17740v1
- Date: Sun, 28 May 2023 14:48:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-30 16:57:34.898012
- Title: Breaking Language Barriers with a LEAP: Learning Strategies for Polyglot
LLMs
- Title(参考訳): LEAPで言語バリアを壊す:多言語LLMの学習戦略
- Authors: Akshay Nambi, Vaibhav Balloli, Mercy Ranjit, Tanuja Ganu, Kabir Ahuja,
Sunayana Sitaram, Kalika Bali
- Abstract要約: 大規模言語モデル(LLM)は、世界中の多くのドメインを変換する最前線にある。
本稿では,LLMの多言語性能向上のための命令的課題に取り組む。
ポリグロットランドスケープにおけるLLMの真のポテンシャルを解き放つ新しい手法を提案する。
- 参考スコア(独自算出の注目度): 5.682384717239095
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are at the forefront of transforming numerous
domains globally. However, their inclusivity and effectiveness remain limited
for non-Latin scripts and low-resource languages. This paper tackles the
imperative challenge of enhancing the multilingual performance of LLMs,
specifically focusing on Generative models. Through systematic investigation
and evaluation of diverse languages using popular question-answering (QA)
datasets, we present novel techniques that unlock the true potential of LLMs in
a polyglot landscape. Our approach encompasses three key strategies that yield
remarkable improvements in multilingual proficiency. First, by meticulously
optimizing prompts tailored for polyglot LLMs, we unlock their latent
capabilities, resulting in substantial performance boosts across languages.
Second, we introduce a new hybrid approach that synergizes GPT generation with
multilingual embeddings and achieves significant multilingual performance
improvement on critical tasks like QA and retrieval. Finally, to further propel
the performance of polyglot LLMs, we introduce a novel learning algorithm that
dynamically selects the optimal prompt strategy, LLM model, and embeddings per
query. This dynamic adaptation maximizes the efficacy of LLMs across languages,
outperforming best static and random strategies. Our results show substantial
advancements in multilingual understanding and generation across a diverse
range of languages.
- Abstract(参考訳): 大規模言語モデル(llm)は、多くのドメインをグローバルに変革する最前線にある。
しかしながら、その傾向と有効性は、非ラテン語スクリプトや低リソース言語に限られている。
本稿では,LLMの多言語的性能向上という課題に取り組み,特に生成モデルに着目した。
一般的な質問応答(QA)データセットを用いた多言語言語の体系的調査と評価を通じて,多言語ランドスケープにおけるLLMの真のポテンシャルを解き放つ新しい手法を提案する。
提案手法は,多言語習熟度を著しく向上させる3つの重要な戦略を含む。
まず,ポリグロットLLMに適したプロンプトを巧みに最適化することにより,その潜在能力を解放し,言語間で大幅な性能向上を実現する。
第2に,GPT生成を多言語埋め込みと相乗化し,QAや検索といった重要なタスクにおいて,多言語のパフォーマンス向上を実現するハイブリッド手法を提案する。
最後に,多言語LLMの性能をさらに向上させるために,最適プロンプト戦略,LLMモデル,クエリ毎の埋め込みを動的に選択する新しい学習アルゴリズムを提案する。
この動的適応は言語間のLLMの有効性を最大化し、最高の静的およびランダムな戦略より優れる。
以上の結果から,多言語理解と多言語生成の進歩が示唆された。
関連論文リスト
- Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lensは、大規模言語モデル(LLM)の多言語機能を強化する新しいアプローチである
LLMの上位層から言語に依存しない、言語固有のサブ空間内の隠された表現を操作できる。
既存のポストトレーニング手法に比べて計算資源がはるかに少ないため、優れた結果が得られる。
論文 参考訳(メタデータ) (2024-10-06T08:51:30Z) - Multilingual Prompts in LLM-Based Recommenders: Performance Across Languages [0.0]
この研究は、非英語のプロンプトがレコメンデーションパフォーマンスに与える影響を探求する。
ML1M、LastFM、Amazon-Beautyの3つの実世界のデータセットの評価は、非英語プロンプトの使用が一般的にパフォーマンスを低下させることを示した。
多言語プロンプトによるリトレーニングにより、言語間のバランスの取れたパフォーマンスが向上したが、英語のパフォーマンスはわずかに低下した。
論文 参考訳(メタデータ) (2024-09-11T20:31:42Z) - Teaching LLMs to Abstain across Languages via Multilingual Feedback [40.84205285309612]
多言語フィードバックは,多様な言語,文化,コミュニティ間の知識ギャップを識別する上で有効であることを示す。
大規模な実験により、多言語フィードバックアプローチは、様々な強いベースラインよりも優れていることが示された。
さらに分析したところ、多言語フィードバックは多言語話者に役立てるための効果的かつ公平な回避戦略であることがわかった。
論文 参考訳(メタデータ) (2024-06-22T21:59:12Z) - Exploring Design Choices for Building Language-Specific LLMs [36.32622880071991]
単言語モデルと多言語モデルを適用し,言語固有の言語モデルの構築について検討する。
LLMの初期性能は適応後の最終性能と必ずしも相関しないことがわかった。
論文 参考訳(メタデータ) (2024-06-20T18:47:43Z) - Bridging the Gap: Dynamic Learning Strategies for Improving Multilingual Performance in LLMs [15.911445732909849]
大規模言語モデル(LLM)は、世界中の多くのドメインを変換する最前線にある。
しかしながら、その傾向と有効性は、非ラテン文字や低リソース言語に限られている。
本稿では,LLMの多言語的性能向上を,広範囲の訓練や微調整を伴わずに行うことの必須課題に対処する。
論文 参考訳(メタデータ) (2024-05-28T16:56:42Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
大きな言語モデル(LLM)は印象的な言語機能を示している。
本研究では,LLMの自然多言語アライメント改善について検討する。
質問翻訳データ(すなわち注釈付き回答なし)に基づいて学習したLLMは、英語と幅広い言語との整合を促進できることがわかった。
論文 参考訳(メタデータ) (2024-05-22T16:46:19Z) - Enhancing Multilingual Capabilities of Large Language Models through
Self-Distillation from Resource-Rich Languages [60.162717568496355]
大規模言語モデル(LLM)は多言語コーパスで事前訓練されている。
彼らのパフォーマンスは、いくつかのリソース豊富な言語と比較して、ほとんどの言語でまだ遅れています。
論文 参考訳(メタデータ) (2024-02-19T15:07:32Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Okapi: Instruction-tuned Large Language Models in Multiple Languages
with Reinforcement Learning from Human Feedback [61.83548032416181]
複数の言語を対象としたRLHFに基づく命令調整型LLMシステムであるOkapiを提案する。
オカピは26の多言語言語でインストラクションと応答ランクデータを導入し、将来の多言語LLM研究の促進と開発に役立てている。
論文 参考訳(メタデータ) (2023-07-29T18:01:46Z) - Not All Languages Are Created Equal in LLMs: Improving Multilingual
Capability by Cross-Lingual-Thought Prompting [123.16452714740106]
大規模言語モデル(LLM)は印象的な多言語機能を示すが、その性能は言語によって大きく異なる。
XLT (cross-lingual- Thought prompting) という,シンプルで効果的な方法を提案する。
XLTは汎用テンプレートプロンプトで、言語間および論理的推論スキルを刺激し、言語間のタスクパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2023-05-11T17:44:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。