論文の概要: Multilingual Prompts in LLM-Based Recommenders: Performance Across Languages
- arxiv url: http://arxiv.org/abs/2409.07604v1
- Date: Wed, 11 Sep 2024 20:31:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 15:56:11.793626
- Title: Multilingual Prompts in LLM-Based Recommenders: Performance Across Languages
- Title(参考訳): LLMベースのレコメンダにおける多言語プロンプト:言語間のパフォーマンス
- Authors: Makbule Gulcin Ozsoy,
- Abstract要約: この研究は、非英語のプロンプトがレコメンデーションパフォーマンスに与える影響を探求する。
ML1M、LastFM、Amazon-Beautyの3つの実世界のデータセットの評価は、非英語プロンプトの使用が一般的にパフォーマンスを低下させることを示した。
多言語プロンプトによるリトレーニングにより、言語間のバランスの取れたパフォーマンスが向上したが、英語のパフォーマンスはわずかに低下した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Large language models (LLMs) are increasingly used in natural language processing tasks. Recommender systems traditionally use methods such as collaborative filtering and matrix factorization, as well as advanced techniques like deep learning and reinforcement learning. Although language models have been applied in recommendation, the recent trend have focused on leveraging the generative capabilities of LLMs for more personalized suggestions. While current research focuses on English due to its resource richness, this work explores the impact of non-English prompts on recommendation performance. Using OpenP5, a platform for developing and evaluating LLM-based recommendations, we expanded its English prompt templates to include Spanish and Turkish. Evaluation on three real-world datasets, namely ML1M, LastFM, and Amazon-Beauty, showed that usage of non-English prompts generally reduce performance, especially in less-resourced languages like Turkish. We also retrained an LLM-based recommender model with multilingual prompts to analyze performance variations. Retraining with multilingual prompts resulted in more balanced performance across languages, but slightly reduced English performance. This work highlights the need for diverse language support in LLM-based recommenders and suggests future research on creating evaluation datasets, using newer models and additional languages.
- Abstract(参考訳): 大規模言語モデル(LLM)は、自然言語処理タスクでますます使われている。
レコメンダシステムは伝統的に、協調フィルタリングや行列分解といった手法や、ディープラーニングや強化学習といった高度な技術を使っている。
言語モデルは推奨されているが、近年のトレンドは、よりパーソナライズされた提案にLLMの生成能力を活用することに焦点を当てている。
現在の研究は資源豊かさから英語に焦点を当てているが、この研究は非英語のプロンプトがレコメンデーションパフォーマンスに与える影響を探求するものである。
LLMベースのレコメンデーションの開発と評価を行うプラットフォームであるOpenP5を使用して、英語のプロンプトテンプレートを拡張して、スペイン語とトルコ語を含むようにしました。
ML1M、LastFM、Amazon-Beautyの3つの実世界のデータセットの評価は、非英語プロンプトの使用が一般的にパフォーマンスを低下させることを示した。
また,多言語プロンプトを用いたLLMベースのレコメンデータモデルを用いて,性能変動の分析を行った。
多言語プロンプトによるリトレーニングにより、言語間のバランスの取れたパフォーマンスが向上したが、英語のパフォーマンスはわずかに低下した。
この研究は、LLMベースのレコメンデータにおける多様な言語サポートの必要性を強調し、新しいモデルと追加言語を使用して評価データセットを作成するための将来の研究を提案する。
関連論文リスト
- Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
CLS(Cross-lingual summarization)は、異なるターゲット言語でソーステキストの要約を生成することを目的としている。
現在、インストラクションチューニング付き大規模言語モデル (LLM) は様々な英語タスクで優れている。
近年の研究では、LCSタスクにおけるLCMの性能は、わずかな設定でも満足できないことが示されている。
論文 参考訳(メタデータ) (2024-10-26T00:39:44Z) - What do Large Language Models Need for Machine Translation Evaluation? [12.42394213466485]
大規模言語モデル(LLM)は、微調整された多言語事前訓練言語モデルに匹敵する結果が得られる。
本稿では,LLMの機械翻訳品質を評価するために,ソース,参照,翻訳エラー,ガイドラインなどの翻訳情報が必要であるかを検討する。
論文 参考訳(メタデータ) (2024-10-04T09:50:45Z) - Bridging the Gap: Dynamic Learning Strategies for Improving Multilingual Performance in LLMs [15.911445732909849]
大規模言語モデル(LLM)は、世界中の多くのドメインを変換する最前線にある。
しかしながら、その傾向と有効性は、非ラテン文字や低リソース言語に限られている。
本稿では,LLMの多言語的性能向上を,広範囲の訓練や微調整を伴わずに行うことの必須課題に対処する。
論文 参考訳(メタデータ) (2024-05-28T16:56:42Z) - MindMerger: Efficient Boosting LLM Reasoning in non-English Languages [26.334092384176518]
推論能力は大規模言語モデル(LLM)にとって不可欠である
我々は,多言語モデルからLLMと外部言語理解機能を融合したMindMergerを提案する。
MindMergerは、特に低リソース言語において、すべてのベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2024-05-27T17:41:54Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
大きな言語モデル(LLM)は印象的な言語機能を示している。
本研究では,LLMの自然多言語アライメント改善について検討する。
質問翻訳データ(すなわち注釈付き回答なし)に基づいて学習したLLMは、英語と幅広い言語との整合を促進できることがわかった。
論文 参考訳(メタデータ) (2024-05-22T16:46:19Z) - Enhancing Multilingual Capabilities of Large Language Models through
Self-Distillation from Resource-Rich Languages [60.162717568496355]
大規模言語モデル(LLM)は多言語コーパスで事前訓練されている。
彼らのパフォーマンスは、いくつかのリソース豊富な言語と比較して、ほとんどの言語でまだ遅れています。
論文 参考訳(メタデータ) (2024-02-19T15:07:32Z) - Okapi: Instruction-tuned Large Language Models in Multiple Languages
with Reinforcement Learning from Human Feedback [61.83548032416181]
複数の言語を対象としたRLHFに基づく命令調整型LLMシステムであるOkapiを提案する。
オカピは26の多言語言語でインストラクションと応答ランクデータを導入し、将来の多言語LLM研究の促進と開発に役立てている。
論文 参考訳(メタデータ) (2023-07-29T18:01:46Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
大規模言語モデル(LLM)は、少数の例を単純に観察することで、効果的にタスクを実行することが知られている。
我々は,LLMが任意の言語から英語に翻訳するよう促すために,多種多様な高ソース言語から合成例を組み立てることを提案する。
我々の教師なしプロンプト法は、英語と13のIndic言語と21のアフリカ低リソース言語間の翻訳において、異なる大きさのLLMにおける教師付き少ショット学習と同等に機能する。
論文 参考訳(メタデータ) (2023-06-20T08:27:47Z) - Breaking Language Barriers with a LEAP: Learning Strategies for Polyglot
LLMs [5.682384717239095]
大規模言語モデル(LLM)は、世界中の多くのドメインを変換する最前線にある。
本稿では,LLMの多言語性能向上のための命令的課題に取り組む。
ポリグロットランドスケープにおけるLLMの真のポテンシャルを解き放つ新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-28T14:48:38Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。