論文の概要: Leveraging Evolutionary Changes for Software Process Quality
- arxiv url: http://arxiv.org/abs/2305.18061v2
- Date: Thu, 15 Jun 2023 09:24:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-17 00:19:42.006723
- Title: Leveraging Evolutionary Changes for Software Process Quality
- Title(参考訳): ソフトウェアプロセス品質の進化的変化を活用する
- Authors: Sebastian H\"onel
- Abstract要約: 現実世界のソフトウェアアプリケーションは、常に進化し続けなければならない。
ソフトウェア品質管理の従来の手法には、ソフトウェアの品質モデルと継続的コード検査ツールが含まれる。
しかし、開発プロセスの品質と結果のソフトウェア製品との間には、強い相関関係と因果関係がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Real-world software applications must constantly evolve to remain relevant.
This evolution occurs when developing new applications or adapting existing
ones to meet new requirements, make corrections, or incorporate future
functionality. Traditional methods of software quality control involve software
quality models and continuous code inspection tools. These measures focus on
directly assessing the quality of the software. However, there is a strong
correlation and causation between the quality of the development process and
the resulting software product. Therefore, improving the development process
indirectly improves the software product, too. To achieve this, effective
learning from past processes is necessary, often embraced through post mortem
organizational learning. While qualitative evaluation of large artifacts is
common, smaller quantitative changes captured by application lifecycle
management are often overlooked. In addition to software metrics, these smaller
changes can reveal complex phenomena related to project culture and management.
Leveraging these changes can help detect and address such complex issues.
Software evolution was previously measured by the size of changes, but the
lack of consensus on a reliable and versatile quantification method prevents
its use as a dependable metric. Different size classifications fail to reliably
describe the nature of evolution. While application lifecycle management data
is rich, identifying which artifacts can model detrimental managerial practices
remains uncertain. Approaches such as simulation modeling, discrete events
simulation, or Bayesian networks have only limited ability to exploit
continuous-time process models of such phenomena. Even worse, the accessibility
and mechanistic insight into such gray- or black-box models are typically very
low. To address these challenges, we suggest leveraging objectively [...]
- Abstract(参考訳): 現実世界のソフトウェアアプリケーションは、常に進化し続けなければならない。
この進化は、新しいアプリケーションを開発したり、新しい要求を満たしたり、修正したり、将来の機能を組み込んだりする際に起こります。
従来のソフトウェア品質管理には、ソフトウェア品質モデルと継続的コード検査ツールが含まれる。
これらの尺度は、ソフトウェアの品質を直接評価することに焦点を当てます。
しかし、開発プロセスの品質と結果のソフトウェア製品との間には、強い相関関係と因果関係がある。
したがって、開発プロセスの改善は間接的にソフトウェア製品も改善します。
これを実現するには、過去のプロセスから効果的な学習が必要であり、しばしば死後の組織学習を通じて受け入れられる。
大規模なアーティファクトの質的評価は一般的だが、アプリケーションライフサイクル管理によって得られる小さな量的変化はしばしば見過ごされる。
ソフトウェアメトリクスに加えて、これらの小さな変更は、プロジェクト文化とマネジメントに関連する複雑な現象を明らかにします。
これらの変更を活用することで、このような複雑な問題の検出と対処に役立ちます。
ソフトウェアの進化は以前、変更のサイズによって測定されていたが、信頼性と汎用性の定量化方法に関する合意の欠如は、信頼できるメトリクスとしての使用を妨げている。
異なる大きさの分類は進化の性質を確実に記述することができない。
アプリケーションのライフサイクル管理データは豊富だが、どのアーティファクトが有害な管理プラクティスをモデル化できるかはいまだ不明だ。
シミュレーションモデリング、離散事象シミュレーション、ベイズネットワークのようなアプローチは、そのような現象の連続的なプロセスモデルを利用する能力に限られる。
さらに悪いことに、このようなグレーまたはブラックボックスモデルに対するアクセシビリティと機械的な洞察は、通常非常に低い。
これらの課題に対処するために、客観的に活用することを提案します [...]
関連論文リスト
- LLMs as Continuous Learners: Improving the Reproduction of Defective Code in Software Issues [62.12404317786005]
EvoCoderは、イシューコード再現のための継続的学習フレームワークである。
その結果,既存のSOTA法よりも20%改善した。
論文 参考訳(メタデータ) (2024-11-21T08:49:23Z) - Lingma SWE-GPT: An Open Development-Process-Centric Language Model for Automated Software Improvement [62.94719119451089]
Lingma SWE-GPTシリーズは、現実世界のコード提出活動から学び、シミュレーションする。
Lingma SWE-GPT 72BはGitHubの30.20%の問題を解決する。
論文 参考訳(メタデータ) (2024-11-01T14:27:16Z) - How to Measure Performance in Agile Software Development? A Mixed-Method Study [2.477589198476322]
この研究は、アジャイルソフトウェア開発のパフォーマンス指標を実際に使用するときに生じる課題を特定することを目的としている。
結果として、広く使用されているパフォーマンスメトリクスが実際に広く使用されている一方で、アジャイルソフトウェア開発チームは透明性と標準化の欠如と不十分な正確性のために、課題に直面しています。
論文 参考訳(メタデータ) (2024-07-08T19:53:01Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - Towards Understanding the Impact of Code Modifications on Software Quality Metrics [1.2277343096128712]
本研究の目的は、コード修正がソフトウェアの品質指標に与える影響を評価し、解釈することである。
基礎となる仮説は、ソフトウェア品質のメトリクスに類似した変更を誘発するコード修正は、異なるクラスタにグループ化できる、というものである。
結果は、コード修正の異なるクラスタを明らかにし、それぞれに簡潔な記述が伴い、ソフトウェアの品質指標に対する全体的な影響を明らかにした。
論文 参考訳(メタデータ) (2024-04-05T08:41:18Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - Do Internal Software Metrics Have Relationship with Fault-proneness and Change-proneness? [1.9526430269580959]
私たちは、ApacheとEclipseのエコシステムにおける変更の発端と欠陥の発端の計測とともに、25の社内ソフトウェアメトリクスを特定しました。
ほとんどのメトリクスは、障害発生率とほとんど、あるいは全く相関を持っていません。
継承、結合、コメントに関連するメトリクスは、変更の傾向と中程度から高い相関を示した。
論文 参考訳(メタデータ) (2023-09-23T07:19:41Z) - Contrastive Example-Based Control [163.6482792040079]
報酬関数ではなく多段階遷移の暗黙的なモデルを学ぶオフラインのサンプルベース制御法を提案する。
状態ベースおよび画像ベースのオフライン制御タスクの範囲で、学習された報酬関数を使用するベースラインよりも優れています。
論文 参考訳(メタデータ) (2023-07-24T19:43:22Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z) - Software Effort Estimation using parameter tuned Models [1.9336815376402716]
見積もりの正確さは、プロジェクトの失敗の理由です。
ソフトウェア業界の最大の落とし穴は、ソフトウェア開発の急速に変化する性質であった。
ソフトウェア製品の開発コストを正確に予測する有用なモデルの開発が必要です。
論文 参考訳(メタデータ) (2020-08-25T15:18:59Z) - Many-Objective Software Remodularization using NSGA-III [17.487053547108516]
NSGA-IIIを用いた多目的探索手法を提案する。
このプロセスは、パッケージの構造を改善し、変更数を最小化し、セマンティクスの一貫性を保ち、変更の歴史を再利用する最適な再モジュール化ソリューションを見つけることを目的としている。
論文 参考訳(メタデータ) (2020-05-13T18:34:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。