論文の概要: A Survey on ChatGPT: AI-Generated Contents, Challenges, and Solutions
- arxiv url: http://arxiv.org/abs/2305.18339v2
- Date: Sun, 30 Jul 2023 02:31:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-01 21:04:31.366723
- Title: A Survey on ChatGPT: AI-Generated Contents, Challenges, and Solutions
- Title(参考訳): chatgptに関する調査:aiが生成するコンテンツ、課題、ソリューション
- Authors: Yuntao Wang, Yanghe Pan, Miao Yan, Zhou Su, and Tom H. Luan
- Abstract要約: AIGCは、生成可能な大規模なAIアルゴリズムを使用して、人間が高速で低コストで、大規模で高品質で、人間に似たコンテンツを作成するのを支援する。
本稿では,作業原則,セキュリティとプライバシの脅威,最先端のソリューション,AIGCパラダイムの今後の課題について,詳細な調査を行う。
- 参考スコア(独自算出の注目度): 19.50785795365068
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the widespread use of large artificial intelligence (AI) models such as
ChatGPT, AI-generated content (AIGC) has garnered increasing attention and is
leading a paradigm shift in content creation and knowledge representation. AIGC
uses generative large AI algorithms to assist or replace humans in creating
massive, high-quality, and human-like content at a faster pace and lower cost,
based on user-provided prompts. Despite the recent significant progress in
AIGC, security, privacy, ethical, and legal challenges still need to be
addressed. This paper presents an in-depth survey of working principles,
security and privacy threats, state-of-the-art solutions, and future challenges
of the AIGC paradigm. Specifically, we first explore the enabling technologies,
general architecture of AIGC, and discuss its working modes and key
characteristics. Then, we investigate the taxonomy of security and privacy
threats to AIGC and highlight the ethical and societal implications of GPT and
AIGC technologies. Furthermore, we review the state-of-the-art AIGC
watermarking approaches for regulatable AIGC paradigms regarding the AIGC model
and its produced content. Finally, we identify future challenges and open
research directions related to AIGC.
- Abstract(参考訳): ChatGPTのような大規模な人工知能(AI)モデルの普及に伴い、AIGC(AI- generated content)が注目され、コンテンツ生成と知識表現のパラダイムシフトを導いている。
AIGCは、生成可能な大規模なAIアルゴリズムを使用して、ユーザが提供するプロンプトに基づいて、大規模で高品質で人間らしいコンテンツをより高速で低コストで作成する、あるいは置き換える。
AIGCの最近の顕著な進歩にもかかわらず、セキュリティ、プライバシ、倫理、法的課題に対処する必要がある。
本稿では,aigcパラダイムの作業原則,セキュリティとプライバシの脅威,最先端のソリューション,今後の課題に関する詳細な調査を行う。
具体的には、まずAIGCの実現可能な技術、一般的なアーキテクチャについて検討し、その動作モードと重要な特徴について論じる。
そして、AIGCに対するセキュリティおよびプライバシの脅威の分類を調査し、GPTおよびAIGC技術の倫理的および社会的意味を強調する。
さらに,AIGCモデルとその生成コンテンツに関する拡張可能なAIGCパラダイムに対する,最先端のAIGC透かし手法について概説する。
最後に,AIGCに関する今後の課題と研究の方向性を明らかにする。
関連論文リスト
- Trustworthy, Responsible, and Safe AI: A Comprehensive Architectural Framework for AI Safety with Challenges and Mitigations [14.150792596344674]
AI安全性は、AIシステムの安全な採用とデプロイにおいて重要な領域である。
私たちの目標は、AI安全研究の進歩を促進し、究極的には、デジタルトランスフォーメーションに対する人々の信頼を高めることです。
論文 参考訳(メタデータ) (2024-08-23T09:33:48Z) - Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing [74.58071278710896]
生成AIは、学術分野と産業分野の両方から多くの注目を集めている。
セキュアでプライバシ保護のモバイルクラウドセンシング(SPPMCS)は、データ収集/取得に広く応用されている。
論文 参考訳(メタデータ) (2024-05-17T04:00:58Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
本稿では,高度AIアシスタントがもたらす倫理的・社会的リスクについて論じる。
我々は、高度なAIアシスタントを自然言語インタフェースを持つ人工知能エージェントとして定義し、ユーザに代わってアクションのシーケンスを計画し実行することを目的としている。
先進的なアシスタントの社会規模での展開を考察し、協力、株式とアクセス、誤情報、経済的影響、環境、先進的なAIアシスタントの評価方法に焦点をあてる。
論文 参考訳(メタデータ) (2024-04-24T23:18:46Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
汎用AIは、一般大衆がAIを使用してそのパワーを利用するための障壁を下げたようだ。
本稿では,AI利用事例とその影響を推測し,評価するためのフレームワークであるPartICIP-AIを紹介する。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - From Google Gemini to OpenAI Q* (Q-Star): A Survey of Reshaping the
Generative Artificial Intelligence (AI) Research Landscape [5.852005817069381]
生成人工知能(AI)の現状と今後の動向について批判的考察
GoogleのGeminiや、予想されるOpenAI Q*プロジェクトといったイノベーションが、さまざまなドメインにわたる研究の優先順位とアプリケーションをどう変えているのかを調査した。
この研究は、倫理的および人間中心の手法をAI開発に取り入れることの重要性を強調し、社会規範と福祉の整合性を確保した。
論文 参考訳(メタデータ) (2023-12-18T01:11:39Z) - Deepfakes, Misinformation, and Disinformation in the Era of Frontier AI, Generative AI, and Large AI Models [7.835719708227145]
ディープフェイクとm/disinformationの拡散は、世界中の情報エコシステムの整合性に対する恐ろしい脅威として現れている。
我々は,大規模モデル(LM-based GenAI)をベースとした生成AIの仕組みを強調した。
我々は、高度な検出アルゴリズム、クロスプラットフォームのコラボレーション、ポリシー駆動のイニシアチブを組み合わせた統合フレームワークを導入する。
論文 参考訳(メタデータ) (2023-11-29T06:47:58Z) - Challenges and Remedies to Privacy and Security in AIGC: Exploring the
Potential of Privacy Computing, Blockchain, and Beyond [17.904983070032884]
本稿では,AIGCの概念,分類,基礎技術について概観する。
複数の観点からAIGCが直面するプライバシーとセキュリティの課題について論じる。
論文 参考訳(メタデータ) (2023-06-01T07:49:22Z) - AI-Generated Content (AIGC): A Survey [4.108847841902397]
人工知能生成コンテンツ(AIGC)は、デジタル経済におけるデジタルインテリジェンスの課題に対処するために登場した。
本稿では,AIGCの定義,必須条件,最先端機能,高度な機能について概説する。
論文 参考訳(メタデータ) (2023-03-26T02:22:12Z) - A Complete Survey on Generative AI (AIGC): Is ChatGPT from GPT-4 to
GPT-5 All You Need? [112.12974778019304]
生成AI(AIGC、つまりAI生成コンテンツ)は、テキスト、画像、その他を分析、作成する能力により、あらゆる場所で話題を呼んだ。
純粋な分析から創造へと移行するAIの時代において、ChatGPTは最新の言語モデルであるGPT-4とともに、多くのAIGCタスクからなるツールである。
本研究は,テキスト,画像,ビデオ,3Dコンテンツなど,出力タイプに基づいたAIGCタスクの技術的開発に焦点を当てている。
論文 参考訳(メタデータ) (2023-03-21T10:09:47Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPTおよびその他の生成AI(GAI)技術は、人工知能生成コンテンツ(AIGC)のカテゴリに属している。
AIGCの目標は、コンテンツ作成プロセスをより効率的かつアクセスしやすくし、高品質なコンテンツをより高速に生産できるようにすることである。
論文 参考訳(メタデータ) (2023-03-07T20:36:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。