論文の概要: Challenges and Remedies to Privacy and Security in AIGC: Exploring the
Potential of Privacy Computing, Blockchain, and Beyond
- arxiv url: http://arxiv.org/abs/2306.00419v1
- Date: Thu, 1 Jun 2023 07:49:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 17:44:15.035587
- Title: Challenges and Remedies to Privacy and Security in AIGC: Exploring the
Potential of Privacy Computing, Blockchain, and Beyond
- Title(参考訳): AIGCにおけるプライバシとセキュリティへの挑戦と対策 - プライバシコンピューティングやブロックチェーンなどの可能性を探る
- Authors: Chuan Chen, Zhenpeng Wu, Yanyi Lai, Wenlin Ou, Tianchi Liao, Zibin
Zheng
- Abstract要約: 本稿では,AIGCの概念,分類,基礎技術について概観する。
複数の観点からAIGCが直面するプライバシーとセキュリティの課題について論じる。
- 参考スコア(独自算出の注目度): 17.904983070032884
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence Generated Content (AIGC) is one of the latest
achievements in AI development. The content generated by related applications,
such as text, images and audio, has sparked a heated discussion. Various
derived AIGC applications are also gradually entering all walks of life,
bringing unimaginable impact to people's daily lives. However, the rapid
development of such generative tools has also raised concerns about privacy and
security issues, and even copyright issues in AIGC. We note that advanced
technologies such as blockchain and privacy computing can be combined with AIGC
tools, but no work has yet been done to investigate their relevance and
prospect in a systematic and detailed way. Therefore it is necessary to
investigate how they can be used to protect the privacy and security of data in
AIGC by fully exploring the aforementioned technologies. In this paper, we
first systematically review the concept, classification and underlying
technologies of AIGC. Then, we discuss the privacy and security challenges
faced by AIGC from multiple perspectives and purposefully list the
countermeasures that currently exist. We hope our survey will help researchers
and industry to build a more secure and robust AIGC system.
- Abstract(参考訳): AIGC(Artificial Intelligence Generated Content)は、AI開発における最新の成果のひとつ。
テキスト、画像、オーディオなどの関連アプリケーションによって生成されたコンテンツは熱い議論を引き起こしている。
さまざまな派生したAIGCアプリケーションは、徐々にすべての人生を歩み込み、人々の日常生活に想像できない影響を与えている。
しかし、このような生成ツールの急速な開発は、プライバシやセキュリティの問題、さらにはAIGCの著作権問題にも懸念を引き起こしている。
ブロックチェーンやプライバシコンピューティングといった高度な技術はAIGCツールと組み合わせることができるが、その関連性や展望を体系的かつ詳細な方法で調査する作業はまだ行われていない。
したがって、上記の技術を十分に探求することで、AIGCにおけるデータのプライバシーとセキュリティを保護するために、どのように使用できるかを検討する必要がある。
本稿では,AIGCの概念,分類,基礎技術について,まず体系的に検討する。
そして、複数の観点からAIGCが直面するプライバシーとセキュリティの課題について議論し、現在存在する対策を意図的にリストアップする。
私たちの調査は、研究者や業界がよりセキュアで堅牢なAIGCシステムを構築するのに役立つことを期待しています。
関連論文リスト
- A Survey on Offensive AI Within Cybersecurity [1.8206461789819075]
攻撃的AIに関する調査論文は、AIシステムに対する攻撃および使用に関する様々な側面を包括的にカバーする。
消費者、企業、公共のデジタルインフラストラクチャなど、さまざまな分野における攻撃的なAIプラクティスの影響を掘り下げる。
この論文では、敵対的な機械学習、AIモデルに対する攻撃、インフラストラクチャ、インターフェース、および情報収集、ソーシャルエンジニアリング、兵器化されたAIといった攻撃的テクニックについて検討する。
論文 参考訳(メタデータ) (2024-09-26T17:36:22Z) - Generative AI for Secure and Privacy-Preserving Mobile Crowdsensing [74.58071278710896]
生成AIは、学術分野と産業分野の両方から多くの注目を集めている。
セキュアでプライバシ保護のモバイルクラウドセンシング(SPPMCS)は、データ収集/取得に広く応用されている。
論文 参考訳(メタデータ) (2024-05-17T04:00:58Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Security and Privacy on Generative Data in AIGC: A Survey [17.456578314457612]
我々はAIGCにおける生成データのセキュリティとプライバシについてレビューする。
プライバシ、制御性、信頼性、コンプライアンスの基本的な性質の観点から、最先端の対策が成功した経験を明らかにする。
論文 参考訳(メタデータ) (2023-09-18T02:35:24Z) - A Survey on ChatGPT: AI-Generated Contents, Challenges, and Solutions [19.50785795365068]
AIGCは、生成可能な大規模なAIアルゴリズムを使用して、人間が高速で低コストで、大規模で高品質で、人間に似たコンテンツを作成するのを支援する。
本稿では,作業原則,セキュリティとプライバシの脅威,最先端のソリューション,AIGCパラダイムの今後の課題について,詳細な調査を行う。
論文 参考訳(メタデータ) (2023-05-25T15:09:11Z) - An Overview of AI and Blockchain Integration for Privacy-Preserving [1.0155633074816937]
本稿では、AIとブロックチェーンの概要を示し、それらの組み合わせと、派生したプライバシ保護技術の組み合わせを要約する。
次に、データ暗号化、識別解除、多層分散台帳、k匿名メソッドにおける特定のアプリケーションシナリオについて検討する。
本稿では、認証管理、アクセス制御、データ保護、ネットワークセキュリティ、スケーラビリティを含む、AIブロックチェーン統合プライバシ保護システムの5つの重要な側面を評価する。
論文 参考訳(メタデータ) (2023-05-06T04:56:45Z) - A Complete Survey on Generative AI (AIGC): Is ChatGPT from GPT-4 to
GPT-5 All You Need? [112.12974778019304]
生成AI(AIGC、つまりAI生成コンテンツ)は、テキスト、画像、その他を分析、作成する能力により、あらゆる場所で話題を呼んだ。
純粋な分析から創造へと移行するAIの時代において、ChatGPTは最新の言語モデルであるGPT-4とともに、多くのAIGCタスクからなるツールである。
本研究は,テキスト,画像,ビデオ,3Dコンテンツなど,出力タイプに基づいたAIGCタスクの技術的開発に焦点を当てている。
論文 参考訳(メタデータ) (2023-03-21T10:09:47Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。