論文の概要: A Hybrid Framework of Reinforcement Learning and Convex Optimization for
UAV-Based Autonomous Metaverse Data Collection
- arxiv url: http://arxiv.org/abs/2305.18481v1
- Date: Mon, 29 May 2023 11:49:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 20:25:31.132374
- Title: A Hybrid Framework of Reinforcement Learning and Convex Optimization for
UAV-Based Autonomous Metaverse Data Collection
- Title(参考訳): UAVに基づく自律的メタバースデータ収集のための強化学習と凸最適化のハイブリッドフレームワーク
- Authors: Peiyuan Si, Liangxin Qian, Jun Zhao, Kwok-Yan Lam
- Abstract要約: 本稿では,UAVが基地局(BS)のカバー範囲を広げて道路側ユニット(RSU)で生成したメタバースデータを収集する,UAV支援型メタバースネットワークについて考察する。
データ収集効率を改善するため、リソース割り当てとトラジェクトリ制御をシステムモデルに統合する。
提案するUAV支援Metaverseネットワークシステムモデルに基づいて,時間系列最適化問題を協調的に解くために,強化学習と凸最適化を備えたハイブリッドフレームワークを設計する。
- 参考スコア(独自算出の注目度): 16.731929552692524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unmanned aerial vehicles (UAVs) are promising for providing communication
services due to their advantages in cost and mobility, especially in the
context of the emerging Metaverse and Internet of Things (IoT). This paper
considers a UAV-assisted Metaverse network, in which UAVs extend the coverage
of the base station (BS) to collect the Metaverse data generated at roadside
units (RSUs). Specifically, to improve the data collection efficiency, resource
allocation and trajectory control are integrated into the system model. The
time-dependent nature of the optimization problem makes it non-trivial to be
solved by traditional convex optimization methods. Based on the proposed
UAV-assisted Metaverse network system model, we design a hybrid framework with
reinforcement learning and convex optimization to {cooperatively} solve the
time-sequential optimization problem. Simulation results show that the proposed
framework is able to reduce the mission completion time with a given
transmission power resource.
- Abstract(参考訳): 無人航空機(UAV)は、特に新興のMetaverse and Internet of Things(IoT)の文脈において、コストとモビリティの優位性のために通信サービスを提供することを約束している。
本稿では,UAVが基地局(BS)を網羅し,道路側ユニット(RSU)で生成されたMetaverseデータを収集する,UAV支援型Metaverseネットワークについて考察する。
具体的には、データ収集効率を改善するために、リソース割り当てとトラジェクトリ制御をシステムモデルに統合する。
最適化問題の時間依存の性質は、従来の凸最適化法で解くことは自明ではない。
提案したUAV支援型Metaverseネットワークシステムモデルに基づいて,時間系列最適化問題を協調的に解くための強化学習と凸最適化を備えたハイブリッドフレームワークを設計する。
シミュレーションの結果,提案するフレームワークは,所定の送信電力資源でミッション完了時間を短縮できることがわかった。
関連論文リスト
- Wireless Federated Learning over UAV-enabled Integrated Sensing and Communication [2.8203310972866382]
本稿では,無人航空機(UAV)を利用した統合型統合学習(FL)における新しい遅延最適化問題について検討する。
ベンチマーク方式と比較して,システム遅延を最大68.54%削減し,高品質な近似解を求めるため,単純かつ効率的な反復アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-11-01T14:25:24Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
本稿では,UAVを用いた協調ビームフォーミング多目的最適化問題 (UCBMOP) を定式化し,UAVの伝送速度を最大化し,全UAVのエネルギー消費を最小化する。
ヘテロジニアス・エージェント・信頼領域ポリシー最適化(HATRPO)を基本フレームワークとし,改良されたHATRPOアルゴリズム,すなわちHATRPO-UCBを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:19:22Z) - Multi-Agent Reinforcement Learning for Offloading Cellular Communications with Cooperating UAVs [21.195346908715972]
無人航空機は、地上のBSからデータトラフィックをオフロードする代替手段を提供する。
本稿では,地上BSからデータオフロードを行うために,複数のUAVを効率的に利用するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-05T12:36:08Z) - Tiny Multi-Agent DRL for Twins Migration in UAV Metaverses: A Multi-Leader Multi-Follower Stackelberg Game Approach [57.15309977293297]
無人航空機(UAV)とメタバースの相乗効果は、UAVメタバースと呼ばれる新しいパラダイムを生み出している。
本稿では,UAVメタバースにおける効率的なUTマイグレーションのためのプルーニング技術に基づく,機械学習に基づく小さなゲームフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-18T02:14:13Z) - UAV-assisted Semantic Communication with Hybrid Action Reinforcement
Learning [19.48293218551122]
本稿では, セマンティックモデルスケール, チャネル割り当て, 送信電力, UAV軌道に関する決定を行うためのハイブリッドアクション強化学習フレームワークを提案する。
シミュレーションの結果,提案したハイブリッドアクション強化学習フレームワークは,アップリンクセマンティックデータ収集の効率を効果的に向上できることが示された。
論文 参考訳(メタデータ) (2023-08-18T06:30:18Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
フェデレーションエッジ学習(FEEL)は、エッジデバイスとサーバ間の定期的な通信を通じて、プライバシ保護モデルトレーニングを可能にする。
無人航空機(UAV)搭載エッジデバイスは、効率的なデータ収集における柔軟性と移動性のため、FEELにとって特に有利である。
論文 参考訳(メタデータ) (2023-06-05T16:01:33Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
高速かつ正確なモデルアグリゲーションを実現するために,クラウド無線アクセスネットワーク(Cloud-RAN)ベースの垂直FLシステムを提案する。
アップリンクとダウンリンクの両方の伝送を考慮した垂直FLアルゴリズムの収束挙動を特徴付ける。
我々は,連続凸近似と代替凸探索に基づくシステム最適化アルゴリズムを開発した,連系トランシーバとフロントホール量子化設計によるシステム最適化フレームワークを構築した。
論文 参考訳(メタデータ) (2023-05-04T09:26:03Z) - Joint Optimization of Deployment and Trajectory in UAV and IRS-Assisted
IoT Data Collection System [25.32139119893323]
無人航空機(UAV)は多くのモノのインターネット(IoT)システムに適用できる。
UAV-IoT無線チャネルは、時には木や高層建築物によってブロックされることがある。
本稿では,UAVの展開と軌道を最適化することで,システムのエネルギー消費を最小化することを目的とする。
論文 参考訳(メタデータ) (2022-10-27T06:27:40Z) - Distributed CNN Inference on Resource-Constrained UAVs for Surveillance
Systems: Design and Optimization [43.9909417652678]
無人航空機(UAV)は、広い地域をカバーし、困難で危険な目標地域にアクセスする能力のため、ここ数年で大きな関心を集めている。
コンピュータビジョンと機械学習の進歩により、UAVは幅広いソリューションやアプリケーションに採用されている。
ディープニューラルネットワーク(DNN)は、それらがオンボードで実行されるのを防ぐ、より深く複雑なモデルに向かって進んでいる。
論文 参考訳(メタデータ) (2021-05-23T20:19:43Z) - Distributed Multi-agent Meta Learning for Trajectory Design in Wireless
Drone Networks [151.27147513363502]
本稿では,動的無線ネットワーク環境で動作するエネルギー制約型ドローン群に対する軌道設計の問題点について検討する。
値ベース強化学習(VDRL)ソリューションとメタトレイン機構を提案する。
論文 参考訳(メタデータ) (2020-12-06T01:30:12Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
我々は、移動基地局(BS)が配備される複数の無人航空機(UAV)のナビゲーションポリシーを設計する。
我々は、地上BSにおけるデータの鮮度を確保するために、エネルギーや情報年齢(AoI)の制約などの異なる文脈情報を組み込んだ。
提案したトレーニングモデルを適用することで、UAV-BSに対する効果的なリアルタイム軌道ポリシーは、時間とともに観測可能なネットワーク状態をキャプチャする。
論文 参考訳(メタデータ) (2020-02-21T07:29:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。