論文の概要: UAV-assisted Semantic Communication with Hybrid Action Reinforcement
Learning
- arxiv url: http://arxiv.org/abs/2309.16713v2
- Date: Fri, 1 Dec 2023 05:24:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-04 17:56:56.337816
- Title: UAV-assisted Semantic Communication with Hybrid Action Reinforcement
Learning
- Title(参考訳): ハイブリッド行動強化学習によるUAV支援セマンティックコミュニケーション
- Authors: Peiyuan Si, Jun Zhao, Kwok-Yan Lam, Qing Yang
- Abstract要約: 本稿では, セマンティックモデルスケール, チャネル割り当て, 送信電力, UAV軌道に関する決定を行うためのハイブリッドアクション強化学習フレームワークを提案する。
シミュレーションの結果,提案したハイブリッドアクション強化学習フレームワークは,アップリンクセマンティックデータ収集の効率を効果的に向上できることが示された。
- 参考スコア(独自算出の注目度): 19.48293218551122
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we aim to explore the use of uplink semantic communications
with the assistance of UAV in order to improve data collection effiicency for
metaverse users in remote areas. To reduce the time for uplink data collection
while balancing the trade-off between reconstruction quality and computational
energy cost, we propose a hybrid action reinforcement learning (RL) framework
to make decisions on semantic model scale, channel allocation, transmission
power, and UAV trajectory. The variables are classified into discrete type and
continuous type, which are optimized by two different RL agents to generate the
combined action. Simulation results indicate that the proposed hybrid action
reinforcement learning framework can effectively improve the efficiency of
uplink semantic data collection under different parameter settings and
outperforms the benchmark scenarios.
- Abstract(参考訳): 本稿では,遠隔地におけるメタバースユーザのためのデータ収集効率を向上させるために,UAVの支援によるアップリンクセマンティックコミュニケーションの利用を検討する。
本研究では,コンストラクション品質と計算エネルギーコストのトレードオフをバランスしながら,アップリンクデータ収集の時間を短縮するために,意味モデルスケール,チャネル割り当て,伝送電力,uav軌道を決定するためのハイブリッドアクション強化学習(rl)フレームワークを提案する。
変数は離散型と連続型に分類され、2つの異なるRLエージェントによって最適化され、組み合わせたアクションを生成する。
シミュレーション結果から,提案するハイブリッドアクション強化学習フレームワークは,異なるパラメータ設定下でのアップリンク意味データ収集の効率を効果的に改善し,ベンチマークシナリオを上回った。
関連論文リスト
- Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
我々は重要セマンティック情報を抽出するために重要地図を活用し、協調的な知覚セマンティックコミュニケーションフレームワークを導入する。
周波数分割多重化(OFDM)とチャネル推定と等化戦略を併用して,時間変化によるマルチパスフェーディングによる課題に対処する。
我々は,ハイブリッド自動繰り返し要求(HARQ)の精神において,我々の意味コミュニケーションフレームワークと統合された新しい意味エラー検出手法を提案する。
論文 参考訳(メタデータ) (2024-08-29T08:53:26Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
本稿では,BMC という名前のペアデータにおけるブリッジ・アンド・モデリングの効果的なフレームワークを提案する。
目的の修正によって、ペアの選好信号の一貫性と情報性が向上する。
DPOだけではこれらの相関をモデル化し、ニュアンス付き変動を捉えるには不十分である。
論文 参考訳(メタデータ) (2024-08-14T11:29:47Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
本稿では,UAVを用いた協調ビームフォーミング多目的最適化問題 (UCBMOP) を定式化し,UAVの伝送速度を最大化し,全UAVのエネルギー消費を最小化する。
ヘテロジニアス・エージェント・信頼領域ポリシー最適化(HATRPO)を基本フレームワークとし,改良されたHATRPOアルゴリズム,すなわちHATRPO-UCBを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:19:22Z) - Collaborative Ground-Space Communications via Evolutionary Multi-objective Deep Reinforcement Learning [113.48727062141764]
地中直接通信を実現するために,分散コラボレーティブビームフォーミング(DCB)に基づくアップリンク通信パラダイムを提案する。
DCBは、低軌道(LEO)衛星と効率的な直接接続を確立することができない端末を分散アンテナとして扱う。
本稿では,進化的多目的深層強化学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:13:02Z) - Distributed Autonomous Swarm Formation for Dynamic Network Bridging [40.27919181139919]
離散化された部分観測可能なマルコフ決定過程(Dec-POMDP)における動的ネットワークブリッジ問題について定式化する。
グラフ畳み込み強化学習(DGN)に基づく問題に対するマルチエージェント強化学習(MARL)アプローチを提案する。
提案手法はシミュレーション環境で評価し,将来性を示す集中型ベースラインと比較した。
論文 参考訳(メタデータ) (2024-04-02T01:45:03Z) - Multi-Agent Reinforcement Learning for Offloading Cellular Communications with Cooperating UAVs [21.195346908715972]
無人航空機は、地上のBSからデータトラフィックをオフロードする代替手段を提供する。
本稿では,地上BSからデータオフロードを行うために,複数のUAVを効率的に利用するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-05T12:36:08Z) - Online Boosting Adaptive Learning under Concept Drift for Multistream
Classification [34.64751041290346]
マルチストリーム分類は,コンセプトドリフトを伴う動的ストリーミングプロセスにおいて,迅速な適応の必要性から,重要な課題となっている。
本稿では,異なるストリーム間の動的相関を適応的に学習する新しいオンラインブースティング適応学習法を提案する。
論文 参考訳(メタデータ) (2023-12-17T23:10:39Z) - A Hybrid Framework of Reinforcement Learning and Convex Optimization for
UAV-Based Autonomous Metaverse Data Collection [16.731929552692524]
本稿では,UAVが基地局(BS)のカバー範囲を広げて道路側ユニット(RSU)で生成したメタバースデータを収集する,UAV支援型メタバースネットワークについて考察する。
データ収集効率を改善するため、リソース割り当てとトラジェクトリ制御をシステムモデルに統合する。
提案するUAV支援Metaverseネットワークシステムモデルに基づいて,時間系列最適化問題を協調的に解くために,強化学習と凸最適化を備えたハイブリッドフレームワークを設計する。
論文 参考訳(メタデータ) (2023-05-29T11:49:20Z) - Distributional Reinforcement Learning for mmWave Communications with
Intelligent Reflectors on a UAV [119.97450366894718]
無人航空機(UAV)搭載のインテリジェントリフレクタ(IR)を用いた新しい通信フレームワークを提案する。
ダウンリンク和率を最大化するために、最適プリコーディング行列(基地局)と反射係数(IR)を共同で導出する。
論文 参考訳(メタデータ) (2020-11-03T16:50:37Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent Reflecting Surface (IRS)は、マルチアンテナアクセスポイント(AP)から受信機へのダウンリンク情報伝達を支援する有望な技術である。
我々は、APのアクティブビームフォーミングとIRSのパッシブビームフォーミングを共同最適化することで、APの送信電力を最小化する。
過去の経験からビームフォーミング戦略に適応できる深層強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T01:42:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。