論文の概要: DelBugV: Delta-Debugging Neural Network Verifiers
- arxiv url: http://arxiv.org/abs/2305.18558v1
- Date: Mon, 29 May 2023 18:42:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 19:34:15.591183
- Title: DelBugV: Delta-Debugging Neural Network Verifiers
- Title(参考訳): DelBugV: デルタデバッグニューラルネットワーク検証
- Authors: Raya Elsaleh and Guy Katz
- Abstract要約: ディープニューラルネットワーク(DNN)は、ボード全体の多様なシステムにおいて重要なコンポーネントになりつつある。
彼らの成功にもかかわらず、しばしば悲惨な結果となり、これがそれらを正式に検証することに大きな関心を惹き付けている。
本稿では,DNN検証器上でデルタデバッギングを自動的に行うDelBugVという新しいツールを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) are becoming a key component in diverse systems
across the board. However, despite their success, they often err miserably; and
this has triggered significant interest in formally verifying them.
Unfortunately, DNN verifiers are intricate tools, and are themselves
susceptible to soundness bugs. Due to the complexity of DNN verifiers, as well
as the sizes of the DNNs being verified, debugging such errors is a daunting
task. Here, we present a novel tool, named DelBugV, that uses automated delta
debugging techniques on DNN verifiers. Given a malfunctioning DNN verifier and
a correct verifier as a point of reference (or, in some cases, just a single,
malfunctioning verifier), DelBugV can produce much simpler DNN verification
instances that still trigger undesired behavior -- greatly facilitating the
task of debugging the faulty verifier. Our tool is modular and extensible, and
can easily be enhanced with additional network simplification methods and
strategies. For evaluation purposes, we ran DelBugV on 4 DNN verification
engines, which were observed to produce incorrect results at the 2021 neural
network verification competition (VNN-COMP'21). We were able to simplify many
of the verification queries that trigger these faulty behaviors, by as much as
99%. We regard our work as a step towards the ultimate goal of producing
reliable and trustworthy DNN-based software.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、ボード全体の多様なシステムにおいて重要なコンポーネントになりつつある。
しかし、その成功にもかかわらず、しばしば悲惨な事態に陥り、公式な検証に多大な関心が寄せられている。
残念なことに、DNN検証は複雑なツールであり、音質のバグの影響を受けやすい。
DNN検証の複雑さとDNNのサイズが検証されているため、そのようなエラーをデバッグするのは大変な作業である。
本稿では,DNN検証器上でデルタデバッギングを自動的に行うDelBugVという新しいツールを提案する。
参照ポイントとしての誤動作DNN検証器と正しい検証器が与えられた場合(あるいは、ある場合、単に単一の誤動作検証器)、DelBugVは、望ましくない動作をトリガーするはるかに単純なDNN検証インスタンスを生成することができる。
我々のツールはモジュールで拡張可能であり、追加のネットワーク単純化手法や戦略で容易に拡張できる。
評価のために,DelBugVを4基のDNN検証エンジン上で実行し,2021年のニューラルネットワーク検証コンテスト(VNN-COMP'21)で不正な結果が得られた。
私たちはこれらの欠陥行動を引き起こす検証クエリの多くを、最大99%単純化することができました。
我々は我々の仕事を、信頼性と信頼性のあるDNNベースのソフトウェアを開発するという究極の目標への一歩と考えている。
関連論文リスト
- ELEGANT: Certified Defense on the Fairness of Graph Neural Networks [94.10433608311604]
グラフニューラルネットワーク(GNN)は,グラフベースのタスクにおいて,目立ったグラフ学習モデルとして登場した。
悪意のある攻撃者は、入力グラフデータに摂動を追加することで、予測の公平度を容易に損なうことができる。
本稿では, ELEGANT というフレームワークを提案し, GNN の公正度レベルにおける認証防御の新たな課題について検討する。
論文 参考訳(メタデータ) (2023-11-05T20:29:40Z) - The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification問題は、DNNの入力構成の数を数えることによって安全性に反する結果となる。
違反の正確な数を返す新しい手法を提案する。
安全クリティカルなベンチマークのセットに関する実験結果を示す。
論文 参考訳(メタデータ) (2023-01-17T18:32:01Z) - Neural Network Verification with Proof Production [7.898605407936655]
そこで本研究では,Simplex ベースの DNN 検証器を実証生産能力で拡張するための新しいメカニズムを提案する。
我々の証明生産は、よく知られたファルカスの補題の効率的な適応に基づいている。
航空機衝突回避のための安全クリティカルシステムの評価は, ほぼすべてのケースにおいて, 証明生産が成功することを示すものである。
論文 参考訳(メタデータ) (2022-06-01T14:14:37Z) - Robustness of Bayesian Neural Networks to White-Box Adversarial Attacks [55.531896312724555]
ベイジアンネットワーク(BNN)は、ランダム性を組み込むことで、敵の攻撃を扱うのに頑丈で適している。
我々はベイズ的推論(つまり変分ベイズ)をDenseNetアーキテクチャに融合させることで、BNN-DenseNetと呼ばれるBNNモデルを作成する。
逆向きに訓練されたBNNは、ほとんどの実験で非ベイズ的で逆向きに訓練されたBNNよりも優れています。
論文 参考訳(メタデータ) (2021-11-16T16:14:44Z) - Minimal Multi-Layer Modifications of Deep Neural Networks [0.0]
我々は、与えられたディープニューラルネットワーク(DNN)を修復するための3M-DNNと呼ばれる新しいツールを提案する。
3M-DNNは、ネットワークの重みの変更を計算し、その振る舞いを補正し、バックエンドの検証エンジンへの一連の呼び出しを通じて、この変更を最小化しようとする。
私たちの知る限りでは、複数のレイヤを同時に修正することでネットワークを修復できる最初の方法です。
論文 参考訳(メタデータ) (2021-10-18T10:20:27Z) - HufuNet: Embedding the Left Piece as Watermark and Keeping the Right
Piece for Ownership Verification in Deep Neural Networks [16.388046449021466]
深部ニューラルネットワーク(DNN)を透かしする新しいソリューションを提案する。
HufuNetは、モデル微調整/pruning、カーネルのカットオフ/補完、機能相当の攻撃、不正所有クレームに対して非常に堅牢です。
論文 参考訳(メタデータ) (2021-03-25T06:55:22Z) - Continuous Safety Verification of Neural Networks [1.7056768055368385]
本稿では,前回のDNN安全検証問題から修正問題設定への移行結果のアプローチについて考察する。
全体的な概念は、認識された画像から視覚的方向を決定するために、DNNコントローラを装備する1/10ドルのスケールで評価される。
論文 参考訳(メタデータ) (2020-10-12T13:28:04Z) - Enhancing Graph Neural Network-based Fraud Detectors against Camouflaged
Fraudsters [78.53851936180348]
近年の実証研究,すなわち特徴カモフラージュと関係カモフラージュの2種類のカモフラージュを紹介した。
既存のGNNはこれらの2つのカモフラージュに対処していない。
カモフラージュ抵抗型GNN(CARE-GNN)と呼ばれる新しいモデルを提案し、カモフラージュに対する3つのユニークなモジュールを用いたGNN集約プロセスを強化する。
論文 参考訳(メタデータ) (2020-08-19T22:33:12Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くの異なる問題設定において最先端の結果を達成する。
DNNはしばしばブラックボックスシステムとして扱われ、評価と検証が複雑になる。
コンピュータビジョンタスクにおける畳み込みニューラルネットワーク(CNN)の成功に触発された、有望な分野のひとつは、対称幾何学的変換に関する知識を取り入れることである。
論文 参考訳(メタデータ) (2020-06-30T14:56:05Z) - CodNN -- Robust Neural Networks From Coded Classification [27.38642191854458]
ディープニューラルネットワーク(Deep Neural Networks、DNN)は、現在進行中の情報革命における革命的な力である。
DNNは、敵対的であろうとランダムであろうと、ノイズに非常に敏感である。
これは、DNNのハードウェア実装と、自律運転のような重要なアプリケーションへの展開において、根本的な課題となる。
提案手法により,DNNのデータ層あるいは内部層は誤り訂正符号で符号化され,ノイズ下での計算が成功することが保証される。
論文 参考訳(メタデータ) (2020-04-22T17:07:15Z) - Adversarial Attacks and Defenses on Graphs: A Review, A Tool and
Empirical Studies [73.39668293190019]
敵攻撃は入力に対する小さな摂動によって容易に騙される。
グラフニューラルネットワーク(GNN)がこの脆弱性を継承することを実証している。
本調査では,既存の攻撃と防御を分類し,対応する最先端の手法を概観する。
論文 参考訳(メタデータ) (2020-03-02T04:32:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。