論文の概要: Efficient median of means estimator
- arxiv url: http://arxiv.org/abs/2305.18681v1
- Date: Tue, 30 May 2023 01:43:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 18:47:27.313282
- Title: Efficient median of means estimator
- Title(参考訳): 平均推定器の効率的な中央値
- Authors: Stanislav Minsker
- Abstract要約: 基底分布に対する最小の仮定の下で、ほぼ最適定数で準ガウス偏差境界を達成する手段推定器の一般的な中央値の修正を提案する。
- 参考スコア(独自算出の注目度): 2.0432586732993374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The goal of this note is to present a modification of the popular median of
means estimator that achieves sub-Gaussian deviation bounds with nearly optimal
constants under minimal assumptions on the underlying distribution. We build on
a recent work on the topic by the author, and prove that desired guarantees can
be attained under weaker requirements.
- Abstract(参考訳): このノートの目的は、基底分布の最小の仮定の下でほぼ最適な定数で準ガウス偏差境界を達成する手段推定器の一般的な中央値を変更することである。
我々は、著者による最近の研究に基づいて、望ましい保証がより弱い要件の下で達成可能であることを証明します。
関連論文リスト
- Source-Free Unsupervised Domain Adaptation with Hypothesis Consolidation
of Prediction Rationale [53.152460508207184]
Source-Free Unsupervised Domain Adaptation (SFUDA)は、モデルがターゲットのドメインラベルやソースドメインデータにアクセスせずに新しいドメインに適応する必要がある、という課題である。
本稿では,各サンプルについて複数の予測仮説を考察し,各仮説の背景にある理論的根拠について考察する。
最適性能を達成するために,モデル事前適応,仮説統合,半教師付き学習という3段階の適応プロセスを提案する。
論文 参考訳(メタデータ) (2024-02-02T05:53:22Z) - Predicting generalization performance with correctness discriminators [64.00420578048855]
未確認データに対して,金のラベルを必要とせず,精度の上下境界を確立する新しいモデルを提案する。
予測された上境界と下限の間に金の精度が確実に成立する様々なタグ付け、構文解析、意味解析タスクを示す。
論文 参考訳(メタデータ) (2023-11-15T22:43:42Z) - Statistical Barriers to Affine-equivariant Estimation [10.077727846124633]
本研究では,ロバスト平均推定のためのアフィン同変推定器の定量的性能について検討する。
古典的推定器は定量的に準最適であるか、あるいは量的保証が欠如していることが分かる。
我々は、下界にほぼ一致する新しいアフィン同変推定器を構築する。
論文 参考訳(メタデータ) (2023-10-16T18:42:00Z) - Entropy Regularization for Population Estimation [3.0175479520609887]
平均報酬推定タスクは、公共政策設定に不可欠であることが示されている。
エントロピーとKLのばらつきを活用することで、既存のベースラインよりも報酬と推定値のばらつきが良くなることを示す。
論文 参考訳(メタデータ) (2022-08-24T19:17:39Z) - A Dimensionality Reduction Method for Finding Least Favorable Priors
with a Focus on Bregman Divergence [108.28566246421742]
そこで本研究では,次元に明示的な有界な有限次元設定に最適化を移動させることができる次元削減法を開発した。
この問題を進展させるため、比較的大きな損失関数、すなわちブレグマンの発散によって引き起こされるベイズ的リスクに限定する。
論文 参考訳(メタデータ) (2022-02-23T16:22:28Z) - KL Guided Domain Adaptation [88.19298405363452]
ドメイン適応は重要な問題であり、現実世界のアプリケーションにしばしば必要である。
ドメイン適応文学における一般的なアプローチは、ソースとターゲットドメインに同じ分布を持つ入力の表現を学ぶことである。
確率的表現ネットワークにより、KL項はミニバッチサンプルにより効率的に推定できることを示す。
論文 参考訳(メタデータ) (2021-06-14T22:24:23Z) - Non-asymptotic analysis and inference for an outlyingness induced
winsorized mean [0.0]
本稿では,平均の下位ゲージ推定器のロバスト性について検討する。
いずれも、データ中の25%以上の汚染に耐えられないことが明らかになった。
また、最高の堅牢性を有するアウトライン性誘起Winsorized平均も導入しています。
論文 参考訳(メタデータ) (2021-05-05T21:35:24Z) - Rao-Blackwellizing the Straight-Through Gumbel-Softmax Gradient
Estimator [93.05919133288161]
一般的なGumbel-Softmax推定器のストレートスルー変量の分散は、ラオ・ブラックウェル化により減少できることを示す。
これは平均二乗誤差を確実に減少させる。
これは分散の低減、収束の高速化、および2つの教師なし潜在変数モデルの性能向上につながることを実証的に実証した。
論文 参考訳(メタデータ) (2020-10-09T22:54:38Z) - Outlier Robust Mean Estimation with Subgaussian Rates via Stability [46.03021473600576]
本研究では,ロバストなアウトリール高次元平均推定問題について検討する。
外乱平均推定のために, ガウス平均を用いた第1次計算効率を得る。
論文 参考訳(メタデータ) (2020-07-30T17:33:03Z) - Distributionally Robust Bayesian Quadrature Optimization [60.383252534861136]
確率分布が未知な分布の不確実性の下でBQOについて検討する。
標準的なBQOアプローチは、固定されたサンプル集合が与えられたときの真の期待目標のモンテカルロ推定を最大化する。
この目的のために,新しい後方サンプリングに基づくアルゴリズム,すなわち分布的に堅牢なBQO(DRBQO)を提案する。
論文 参考訳(メタデータ) (2020-01-19T12:00:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。