Hybrid Driven Learning for Channel Estimation in Intelligent Reflecting
Surface Aided Millimeter Wave Communications
- URL: http://arxiv.org/abs/2305.19005v1
- Date: Tue, 30 May 2023 13:03:37 GMT
- Title: Hybrid Driven Learning for Channel Estimation in Intelligent Reflecting
Surface Aided Millimeter Wave Communications
- Authors: Shuntian Zheng, Sheng Wu, Chunxiao Jiang, Wei Zhang, Xiaojun Jing
- Abstract summary: Intelligent reflecting surfaces (IRS) have been proposed in millimeter wave (mmWave) and terahertz (THz) systems to achieve both coverage and capacity enhancement.
We address the problem of uplink wideband channel estimation for IRS aided multiuser multiple-input single-output (MISO) systems with hybrid architectures.
- Score: 25.311351571810032
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intelligent reflecting surfaces (IRS) have been proposed in millimeter wave
(mmWave) and terahertz (THz) systems to achieve both coverage and capacity
enhancement, where the design of hybrid precoders, combiners, and the IRS
typically relies on channel state information. In this paper, we address the
problem of uplink wideband channel estimation for IRS aided multiuser
multiple-input single-output (MISO) systems with hybrid architectures.
Combining the structure of model driven and data driven deep learning
approaches, a hybrid driven learning architecture is devised for joint
estimation and learning the properties of the channels. For a passive IRS aided
system, we propose a residual learned approximate message passing as a model
driven network. A denoising and attention network in the data driven network is
used to jointly learn spatial and frequency features. Furthermore, we design a
flexible hybrid driven network in a hybrid passive and active IRS aided system.
Specifically, the depthwise separable convolution is applied to the data driven
network, leading to less network complexity and fewer parameters at the IRS
side. Numerical results indicate that in both systems, the proposed hybrid
driven channel estimation methods significantly outperform existing deep
learning-based schemes and effectively reduce the pilot overhead by about 60%
in IRS aided systems.
Related papers
- Machine Learning-Based Channel Prediction for RIS-assisted MIMO Systems With Channel Aging [11.867884158309373]
Reconfigurable intelligent surfaces (RISs) have emerged as a promising technology to enhance the performance of sixth-generation (6G) and beyond communication systems.
The passive nature of RISs and their large number of reflecting elements pose challenges to the channel estimation process.
We propose an extended channel estimation framework for RIS-assisted multiple-input multiple-output (MIMO) systems based on a convolutional neural network (CNN) integrated with an autoregressive (AR) predictor.
arXiv Detail & Related papers (2024-05-09T19:45:49Z) - Extreme Learning Machine-based Channel Estimation in IRS-Assisted Multi-User ISAC System [32.74137740936128]
This paper proposes a practical channel estimation approach for the first time to an IRS-assisted multiuser ISAC system.
A two-stage approach is proposed to transfer the overall estimation problem into sub-ones.
Considering a low-cost demand of the ISAC BS and downlink users, the proposed two-stage approach is realized by an efficient neural network (NN) framework.
arXiv Detail & Related papers (2024-01-29T14:15:11Z) - Deep Learning-Based Rate-Splitting Multiple Access for Reconfigurable
Intelligent Surface-Aided Tera-Hertz Massive MIMO [56.022764337221325]
Reconfigurable intelligent surface (RIS) can significantly enhance the service coverage of Tera-Hertz massive multiple-input multiple-output (MIMO) communication systems.
However, obtaining accurate high-dimensional channel state information (CSI) with limited pilot and feedback signaling overhead is challenging.
This paper proposes a deep learning (DL)-based rate-splitting multiple access scheme for RIS-aided Tera-Hertz multi-user multiple access systems.
arXiv Detail & Related papers (2022-09-18T03:07:37Z) - Federated Channel Learning for Intelligent Reflecting Surfaces With
Fewer Pilot Signals [25.592568132720157]
This paper proposes a federated learning (FL) framework to jointly estimate both direct and cascaded channels in IRS-assisted wireless systems.
We show that the proposed FL-based channel estimation approach requires approximately 60% fewer pilot signals and it exhibits 12 times lower transmission overhead than CL.
arXiv Detail & Related papers (2022-05-06T13:23:39Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
This paper proposes a model-driven deep learning (MDDL)-based channel estimation and feedback scheme for millimeter-wave (mmWave) systems.
To reduce the uplink pilot overhead for estimating the high-dimensional channels from a limited number of radio frequency (RF) chains, we propose to jointly train the phase shift network and the channel estimator as an auto-encoder.
Numerical results show that the proposed MDDL-based channel estimation and feedback scheme outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-22T13:34:53Z) - Wireless Sensing With Deep Spectrogram Network and Primitive Based
Autoregressive Hybrid Channel Model [20.670058030653458]
Human motion recognition (HMR) based on wireless sensing is a low-cost technique for scene understanding.
Current HMR systems adopt support vector machines (SVMs) and convolutional neural networks (CNNs) to classify radar signals.
This paper proposes a deep spectrogram network (DSN) by leveraging the residual mapping technique to enhance the HMR performance.
arXiv Detail & Related papers (2021-04-21T06:33:01Z) - Phase Configuration Learning in Wireless Networks with Multiple
Reconfigurable Intelligent Surfaces [50.622375361505824]
Reconfigurable Intelligent Surfaces (RISs) are highly scalable technology capable of offering dynamic control of electro-magnetic wave propagation.
One of the major challenges with RIS-empowered wireless communications is the low-overhead dynamic configuration of multiple RISs.
We devise low-complexity supervised learning approaches for the RISs' phase configurations.
arXiv Detail & Related papers (2020-10-09T05:35:27Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
This paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems.
We first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels.
The complete channel matrix can be reconstructed from the limited measurements based on compressive sensing.
arXiv Detail & Related papers (2020-06-03T12:18:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.