論文の概要: Findings of the VarDial Evaluation Campaign 2023
- arxiv url: http://arxiv.org/abs/2305.20080v1
- Date: Wed, 31 May 2023 17:55:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-01 14:45:05.658015
- Title: Findings of the VarDial Evaluation Campaign 2023
- Title(参考訳): 2023年品種評価キャンペーンの成果
- Authors: No\"emi Aepli, \c{C}a\u{g}r{\i} \c{C}\"oltekin, Rob Van Der Goot,
Tommi Jauhiainen, Mourhaf Kazzaz, Nikola Ljube\v{s}i\'c, Kai North, Barbara
Plank, Yves Scherrer, Marcos Zampieri
- Abstract要約: 本報告では、2023年のVarDial Evaluation Campaignの一部として編成された共有タスクの結果について述べる。
このキャンペーンは、EACL 2023と共同で、類似言語、品種、方言(VarDial)のための自然言語処理(NLP)に関する10回目のワークショップの一部である。
- 参考スコア(独自算出の注目度): 22.83162731693963
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This report presents the results of the shared tasks organized as part of the
VarDial Evaluation Campaign 2023. The campaign is part of the tenth workshop on
Natural Language Processing (NLP) for Similar Languages, Varieties and Dialects
(VarDial), co-located with EACL 2023. Three separate shared tasks were included
this year: Slot and intent detection for low-resource language varieties
(SID4LR), Discriminating Between Similar Languages -- True Labels (DSL-TL), and
Discriminating Between Similar Languages -- Speech (DSL-S). All three tasks
were organized for the first time this year.
- Abstract(参考訳): 本報告は,vardial evaluation campaign 2023の一環として組織された共有タスクの結果を示す。
このキャンペーンは、EACL 2023と共同で、類似言語、品種、方言(VarDial)のための自然言語処理(NLP)に関する10回目のワークショップの一部である。
今年は、低リソース言語(SID4LR)のスロットとインテント検出、類似言語間の差別化(DSL-TL)、類似言語間の差別化(DSL-S)の3つのタスクが分離された。
今年初めて3つのタスクが編成された。
関連論文リスト
- Findings of the IWSLT 2024 Evaluation Campaign [102.7608597658451]
本稿は、第21回IWSLT会議によって組織された共有タスクについて報告する。
共通タスクは、音声翻訳における7つの科学的課題に対処する。
論文 参考訳(メタデータ) (2024-11-07T19:11:55Z) - Findings of the Third Shared Task on Multilingual Coreference Resolution [1.4191726968556324]
本稿では,CRAC 2024ワークショップの一環として開催されている多言語コア参照解決に関する共有タスクの第3版の概要について述べる。
以前の2版と同様に、参加者はアイデンティティ・コア推論に基づいて参照を識別しクラスタリングできるシステムを開発するよう求められた。
今年の版では、参加者にゼロアナフォラのための金のスロットを提供しないことによって、タスクの複雑さとリアリズムを増大させることで、現実世界の応用に向けて別の一歩を踏み出した。
論文 参考訳(メタデータ) (2024-10-21T12:30:44Z) - DIALECTBENCH: A NLP Benchmark for Dialects, Varieties, and Closely-Related Languages [49.38663048447942]
DIALECTBENCHは,NLPの品種に対する大規模ベンチマークとして初めて提案される。
これにより、異なる言語でNLPシステムの性能を総合的に評価することができる。
標準言語と非標準言語間の性能格差の相当な証拠を提供する。
論文 参考訳(メタデータ) (2024-03-16T20:18:36Z) - Mavericks at NADI 2023 Shared Task: Unravelling Regional Nuances through
Dialect Identification using Transformer-based Approach [0.0]
我々は,国レベルの方言識別を扱うサブタスク1の方法論を強調した。
このタスクは、マルチクラス分類問題に対する18の方言を含むTwitterデータセット(TWT-2023)を使用する。
テストデータセットでF1スコア76.65 (11位)を達成した。
論文 参考訳(メタデータ) (2023-11-30T17:37:56Z) - Findings of the 2023 ML-SUPERB Challenge: Pre-Training and Evaluation
over More Languages and Beyond [89.54151859266202]
2023年のMultilingual Speech Universal Performance Benchmark (ML-SUPERB) Challengeは、宣言されたSUPERBフレームワークに拡張される。
この挑戦は12のモデル提出と54の言語コーパスを集め、154の言語を含む包括的なベンチマークをもたらした。
この結果は、単にスケーリングモデルが多言語音声タスクにおける決定的な解決策ではないことを示唆している。
論文 参考訳(メタデータ) (2023-10-09T08:30:01Z) - ComSL: A Composite Speech-Language Model for End-to-End Speech-to-Text
Translation [79.66359274050885]
公的な事前訓練された音声のみのモデルと言語のみのモデルからなる複合アーキテクチャ上に構築された音声言語モデルであるComSLを提案する。
提案手法は,エンドツーエンドの音声-テキスト翻訳タスクにおいて有効であることを示す。
論文 参考訳(メタデータ) (2023-05-24T07:42:15Z) - UIO at SemEval-2023 Task 12: Multilingual fine-tuning for sentiment
classification in low-resource languages [0.0]
本研究では,事前学習中に見つからない言語における感情分析の資源として,多言語大言語モデルをいかに活用できるかを示す。
言語は事前訓練で使用される言語と関連し、言語データは様々なコードスイッチングを含む。
最終細調整のための単言語データセットと多言語データセットの両方を実験し、数千のサンプルを含むデータセットを用いて、単言語細調整が最良の結果をもたらすことを確かめる。
論文 参考訳(メタデータ) (2023-04-27T13:51:18Z) - SemEval-2022 Task 2: Multilingual Idiomaticity Detection and Sentence
Embedding [12.843166994677286]
本稿では,多言語性検出と文埋め込みにおける共通課題について述べる。
a) 文が慣用的表現を含むかどうかを識別することを目的とした二項分類と、(b) モデルが文脈における潜在的慣用的表現を適切に表現することを要求する意味的テキスト類似性に基づくタスクである。
約100人の登録参加者が参加し、それぞれ650名と150名以上の応募を行った。
論文 参考訳(メタデータ) (2022-04-21T12:20:52Z) - Handshakes AI Research at CASE 2021 Task 1: Exploring different
approaches for multilingual tasks [0.22940141855172036]
ケース2021共有タスク1の目的は,多言語環境下での社会・政治・危機事象情報の検出と分類である。
提案書にはすべてのサブタスクのエントリが含まれており,得られたスコアが調査結果の妥当性を検証した。
論文 参考訳(メタデータ) (2021-10-29T07:58:49Z) - Multilingual and code-switching ASR challenges for low resource Indian
languages [59.2906853285309]
インドの7つの言語に関連する2つのサブタスクを通じて、多言語およびコードスイッチングASRシステムの構築に重点を置いている。
これらの言語では、列車とテストセットからなる600時間分の音声データを合計で提供します。
また,マルチリンガルサブタスクとコードスイッチサブタスクのテストセットでは,それぞれ30.73%と32.45%という,タスクのベースラインレシピも提供しています。
論文 参考訳(メタデータ) (2021-04-01T03:37:01Z) - NEMO: Frequentist Inference Approach to Constrained Linguistic Typology
Feature Prediction in SIGTYP 2020 Shared Task [83.43738174234053]
タイプ的特徴間の相関関係を表現するために頻繁な推論を用い、この表現を用いて、個々の特徴を予測する単純なマルチクラス推定器を訓練する。
テスト言語149言語に対して,マイクロ平均精度0.66を達成できた。
論文 参考訳(メタデータ) (2020-10-12T19:25:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。