論文の概要: Autism Disease Detection Using Transfer Learning Techniques: Performance
Comparison Between Central Processing Unit vs Graphics Processing Unit
Functions for Neural Networks
- arxiv url: http://arxiv.org/abs/2306.00283v1
- Date: Thu, 1 Jun 2023 01:59:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2023-06-02 18:39:43.837561
- Title: Autism Disease Detection Using Transfer Learning Techniques: Performance
Comparison Between Central Processing Unit vs Graphics Processing Unit
Functions for Neural Networks
- Title(参考訳): 伝達学習技術を用いた自閉症疾患検出:ニューラルネットワークにおける中央処理ユニットとグラフ処理ユニット関数の性能比較
- Authors: Mst Shapna Akter, Hossain Shahriar, Alfredo Cuzzocrea
- Abstract要約: 自閉症児と非自閉症児の顔画像を用いた自閉症疾患の分類システムを構築し,パフォーマンスの比較を行った。
また,全試験でGPUがCPUより優れていた。
- 参考スコア(独自算出の注目度): 2.750124853532831
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural network approaches are machine learning methods that are widely used
in various domains, such as healthcare and cybersecurity. Neural networks are
especially renowned for their ability to deal with image datasets. During the
training process with images, various fundamental mathematical operations are
performed in the neural network. These operations include several algebraic and
mathematical functions, such as derivatives, convolutions, and matrix
inversions and transpositions. Such operations demand higher processing power
than what is typically required for regular computer usage. Since CPUs are
built with serial processing, they are not appropriate for handling large image
datasets. On the other hand, GPUs have parallel processing capabilities and can
provide higher speed. This paper utilizes advanced neural network techniques,
such as VGG16, Resnet50, Densenet, Inceptionv3, Xception, Mobilenet, XGBOOST
VGG16, and our proposed models, to compare CPU and GPU resources. We
implemented a system for classifying Autism disease using face images of
autistic and non-autistic children to compare performance during testing. We
used evaluation matrices such as Accuracy, F1 score, Precision, Recall, and
Execution time. It was observed that GPU outperformed CPU in all tests
conducted. Moreover, the performance of the neural network models in terms of
accuracy increased on GPU compared to CPU.
- Abstract(参考訳): ニューラルネットワークアプローチは、医療やサイバーセキュリティなど、さまざまな領域で広く使用されている機械学習手法である。
ニューラルネットワークは特に、画像データセットを扱う能力で有名である。
画像を用いたトレーニングプロセスでは、ニューラルネットワークで様々な基本的な数学的操作が行われる。
これらの演算には、微分、畳み込み、行列反転や転置など、代数的および数学的関数が含まれる。
このような操作は、通常コンピュータの使用に必要なものよりも高い処理能力を必要とする。
CPUはシリアル処理で構築されているため、大きな画像データセットを扱うには適していない。
一方、GPUは並列処理機能を備え、高速な処理を実現することができる。
本稿では,vgg16,resnet50,drknet,inceptionv3,xception,mobilenet,xgboost vgg16などの高度なニューラルネットワーク技術と,提案するモデルを用いて,cpuとgpuリソースを比較する。
自閉症児と非自閉症児の顔画像を用いた自閉症疾患の分類システムを構築し, 検査成績の比較を行った。
精度,F1スコア,精度,リコール,実行時間などの評価行列を用いた。
また,全試験でGPUがCPUより優れていた。
さらに、CPUと比較して、GPU上での精度でニューラルネットワークモデルの性能が向上した。
関連論文リスト
- Machine learning based biomedical image processing for echocardiographic
images [0.0]
提案手法では,K-Nearest Neighbor (KNN) アルゴリズムを用いて医用画像のセグメンテーションを行う。
トレーニングされたニューラルネットワークは、エコー画像のグループで正常にテストされている。
論文 参考訳(メタデータ) (2023-03-16T06:23:43Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Benchmarking GPU and TPU Performance with Graph Neural Networks [0.0]
この研究は、現実のパターン認識問題を解決するために開発されたグラフニューラルネットワーク(GNN)を用いてGPUとTPUのパフォーマンストレーニングを分析し、比較する。
スパースデータに作用する新しいモデルのクラスを特徴付けることは、ディープラーニングライブラリや将来のAIアクセラレータの設計を最適化するのに有効である。
論文 参考訳(メタデータ) (2022-10-21T21:03:40Z) - A Neural Network Based Method with Transfer Learning for Genetic Data
Analysis [3.8599966694228667]
我々はトランスファーラーニング手法とニューラルネットワークに基づく手法(外乱ニューラルネットワーク)を組み合わせる。
これまでの学習を活用して、ゼロから始めることを避けて、モデルのパフォーマンスを改善します。
トランスファーラーニングアルゴリズムを用いることで、トランスファーラーニング技術を用いることなく、期待できるニューラルネットワークと比較して、期待できるニューラルネットワークの性能が向上する。
論文 参考訳(メタデータ) (2022-06-20T16:16:05Z) - Content-Aware Convolutional Neural Networks [98.97634685964819]
畳み込みニューラルネットワーク(CNN)は、畳み込み層の強力な特徴学習能力によって大きな成功を収めている。
本研究では,スムーズなウィンドウを自動的に検出し,元の大規模カーネルを置き換えるために1x1畳み込みカーネルを適用するContent-aware Convolution (CAC)を提案する。
論文 参考訳(メタデータ) (2021-06-30T03:54:35Z) - HistoTransfer: Understanding Transfer Learning for Histopathology [9.231495418218813]
我々は、ImageNetと病理組織データに基づいてトレーニングされたネットワークから抽出された特徴の性能を比較した。
より複雑なネットワークを用いて学習した機能が性能向上につながるかどうかを検討する。
論文 参考訳(メタデータ) (2021-06-13T18:55:23Z) - A Framework for Fast Scalable BNN Inference using Googlenet and Transfer
Learning [0.0]
本論文は、リアルタイム性能の良い物体検出の高精度化を目指します。
バイナライズニューラルネットワークは、画像分類、オブジェクト検出、セマンティックセグメンテーションなど、さまざまな視覚タスクで高いパフォーマンスを発揮しています。
その結果,移動学習法により検出された物体の精度は,既存手法と比較して高いことがわかった。
論文 参考訳(メタデータ) (2021-01-04T06:16:52Z) - CNNs for JPEGs: A Study in Computational Cost [49.97673761305336]
畳み込みニューラルネットワーク(CNN)は過去10年間で驚くべき進歩を遂げてきた。
CNNはRGBピクセルから直接データの堅牢な表現を学習することができる。
近年,圧縮領域から直接学習できる深層学習手法が注目されている。
論文 参考訳(メタデータ) (2020-12-26T15:00:10Z) - Reservoir Memory Machines as Neural Computers [70.5993855765376]
微分可能なニューラルネットワークは、干渉することなく明示的なメモリで人工ニューラルネットワークを拡張する。
我々は、非常に効率的に訓練できるモデルを用いて、微分可能なニューラルネットワークの計算能力を実現する。
論文 参考訳(メタデータ) (2020-09-14T12:01:30Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z) - Spiking Neural Networks Hardware Implementations and Challenges: a
Survey [53.429871539789445]
スパイキングニューラルネットワークは、ニューロンとシナプスの操作原理を模倣する認知アルゴリズムである。
スパイキングニューラルネットワークのハードウェア実装の現状について述べる。
本稿では,これらのイベント駆動アルゴリズムの特性をハードウェアレベルで活用するための戦略について論じる。
論文 参考訳(メタデータ) (2020-05-04T13:24:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。