論文の概要: Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems
- arxiv url: http://arxiv.org/abs/2410.01376v1
- Date: Wed, 2 Oct 2024 09:44:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 21:29:22.020883
- Title: Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems
- Title(参考訳): ビデオから物理を学ぶ:連続力学系の教師なし物理パラメータ推定
- Authors: Alejandro Castañeda Garcia, Jan van Gemert, Daan Brinks, Nergis Tömen,
- Abstract要約: ビデオからの自動パラメータ推定の最先端は、大規模データセット上で教師付きディープネットワークをトレーニングすることによって解決される。
単一ビデオから, 既知, 連続制御方程式の物理パラメータを推定する手法を提案する。
- 参考スコア(独自算出の注目度): 49.11170948406405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extracting physical dynamical system parameters from videos is of great interest to applications in natural science and technology. The state-of-the-art in automatic parameter estimation from video is addressed by training supervised deep networks on large datasets. Such datasets require labels, which are difficult to acquire. While some unsupervised techniques -- which depend on frame prediction -- exist, they suffer from long training times, instability under different initializations, and are limited to hand-picked motion problems. In this work, we propose a method to estimate the physical parameters of any known, continuous governing equation from single videos; our solution is suitable for different dynamical systems beyond motion and is robust to initialization compared to previous approaches. Moreover, we remove the need for frame prediction by implementing a KL-divergence-based loss function in the latent space, which avoids convergence to trivial solutions and reduces model size and compute.
- Abstract(参考訳): ビデオから物理力学系パラメータを抽出することは、自然科学やテクノロジーの応用に大きな関心を持つ。
ビデオからの自動パラメータ推定の最先端は、大規模データセット上で教師付きディープネットワークをトレーニングすることによって解決される。
このようなデータセットにはラベルが必要ですが、取得は困難です。
フレーム予測に依存する教師なしのテクニックがいくつか存在するが、それらは長い訓練時間、異なる初期化の下で不安定であり、手書き動作の問題に限られている。
本研究では, 動き以外の動的システムに適合し, 従来の手法に比べて初期化に頑健である, 一つのビデオから, 既知の連続支配方程式の物理パラメータを推定する手法を提案する。
さらに,KL分割に基づく損失関数を潜在空間に実装することにより,フレーム予測の必要性を排除し,自明な解への収束を回避し,モデルサイズと計算量を削減する。
関連論文リスト
- MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion [118.74385965694694]
我々は動的シーンから時間ステップごとの幾何を直接推定する新しい幾何学的アプローチであるMotion DUSt3R(MonST3R)を提案する。
各タイムステップのポイントマップを単純に推定することで、静的シーンにのみ使用されるDUST3Rの表現を動的シーンに効果的に適応させることができる。
我々は、問題を微調整タスクとしてポーズし、いくつかの適切なデータセットを特定し、この制限されたデータ上でモデルを戦略的に訓練することで、驚くほどモデルを動的に扱えることを示す。
論文 参考訳(メタデータ) (2024-10-04T18:00:07Z) - Foundational Inference Models for Dynamical Systems [5.549794481031468]
我々は,ODEによって決定されると仮定される時系列データの欠落を補うという古典的な問題に対して,新たな視点を提供する。
本稿では,いくつかの(隠れた)ODEを満たすパラメトリック関数を通じて,ゼロショット時系列計算のための新しい教師付き学習フレームワークを提案する。
我々は,1と同一(事前学習)の認識モデルが,63個の異なる時系列に対してゼロショット計算を行なえることを実証的に実証した。
論文 参考訳(メタデータ) (2024-02-12T11:48:54Z) - Physics Informed Neural Fields for Smoke Reconstruction with Sparse Data [73.8970871148949]
まばらなマルチビューRGBビデオから流体を高忠実に再現することは、まだまだ難しい課題だ。
既存のソリューションは、障害物や照明に関する知識を前提とするか、障害物や複雑な照明のない単純な流体シーンのみに焦点を当てる。
本稿では, 制御物理(Navier-Stokes方程式)をエンドツーエンドの最適化で活用することにより, 動的流体を再構築する最初の方法を提案する。
論文 参考訳(メタデータ) (2022-06-14T03:38:08Z) - Neural Implicit Representations for Physical Parameter Inference from a Single Video [49.766574469284485]
本稿では,外見モデルのためのニューラル暗黙表現と,物理現象をモデル化するためのニューラル常微分方程式(ODE)を組み合わせることを提案する。
提案モデルでは,大規模なトレーニングデータセットを必要とする既存のアプローチとは対照的に,単一のビデオから物理的パラメータを識別することが可能になる。
ニューラル暗示表現を使用することで、高解像度ビデオの処理とフォトリアリスティック画像の合成が可能になる。
論文 参考訳(メタデータ) (2022-04-29T11:55:35Z) - Encoding physics to learn reaction-diffusion processes [18.187800601192787]
物理構造を符号化するディープラーニングフレームワークが,PDEシステム体制に関する様々な問題に適用可能であることを示す。
物理を符号化する結果の学習パラダイムは、広範囲な数値実験により、高い精度、堅牢性、解釈可能性、一般化可能性を示す。
論文 参考訳(メタデータ) (2021-06-09T03:02:20Z) - gradSim: Differentiable simulation for system identification and
visuomotor control [66.37288629125996]
本稿では,微分可能マルチフィジカルシミュレーションと微分可能レンダリングを活用し,3次元監督への依存を克服するフレームワークであるgradsimを提案する。
当社の統合グラフは、状態ベースの(3D)監督に頼ることなく、挑戦的なバイスモメータ制御タスクで学習を可能にします。
論文 参考訳(メタデータ) (2021-04-06T16:32:01Z) - Neural Dynamical Systems: Balancing Structure and Flexibility in
Physical Prediction [14.788494279754481]
各種グレーボックス設定における動的モデルの学習方法であるNeural Dynamical Systems (NDS)を紹介する。
NDSはニューラルネットワークを使用してシステムの自由パラメータを推定し、残余項を予測し、将来状態を予測するために時間とともに数値的に統合する。
論文 参考訳(メタデータ) (2020-06-23T00:50:48Z) - Accurately Solving Physical Systems with Graph Learning [22.100386288615006]
本稿では,グラフネットワークを持つ物理系に対する反復解法を高速化する新しい手法を提案する。
エンド・ツー・エンドで物理システムを学習することを目的とした既存の手法とは異なり、我々のアプローチは長期的な安定性を保証する。
本手法は,従来の反復解法の性能を向上させる。
論文 参考訳(メタデータ) (2020-06-06T15:48:34Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z) - Physics Informed Deep Learning for Transport in Porous Media. Buckley
Leverett Problem [0.0]
貯水池モデリングのためのハイブリッド物理に基づく機械学習手法を提案する。
この手法は、物理に基づく正則化を伴う一連の深い敵対的ニューラルネットワークアーキテクチャに依存している。
提案手法は,物理知識を機械学習アルゴリズムに応用するためのシンプルでエレガントな手法である。
論文 参考訳(メタデータ) (2020-01-15T08:20:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。