論文の概要: TriSig: Assessing the statistical significance of triclusters
- arxiv url: http://arxiv.org/abs/2306.00643v2
- Date: Mon, 12 Jun 2023 11:44:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-13 23:24:49.904938
- Title: TriSig: Assessing the statistical significance of triclusters
- Title(参考訳): trisig: triclustersの統計的意義を評価する
- Authors: Leonardo Alexandre, Rafael S. Costa, Rui Henriques
- Abstract要約: 本研究は、テンソルデータのパターンの確率を評価するための統計的枠組みを提案し、ヌル期待から逸脱する。
偽陽性発見のための二項検定に関する総合的な議論が欠かせない。
バイオケミカルおよびバイオテクノロジー分野における、異なる実世界のケーススタディに対する最先端のトリクラスタリングアルゴリズムの適用から得られた結果。
- 参考スコア(独自算出の注目度): 2.064612766965483
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Tensor data analysis allows researchers to uncover novel patterns and
relationships that cannot be obtained from matrix data alone. The information
inferred from the patterns provides valuable insights into disease progression,
bioproduction processes, weather fluctuations, and group dynamics. However,
spurious and redundant patterns hamper this process. This work aims at
proposing a statistical frame to assess the probability of patterns in tensor
data to deviate from null expectations, extending well-established principles
for assessing the statistical significance of patterns in matrix data. A
comprehensive discussion on binomial testing for false positive discoveries is
entailed at the light of: variable dependencies, temporal dependencies and
misalignments, and \textit{p}-value corrections under the Benjamini-Hochberg
procedure. Results gathered from the application of state-of-the-art
triclustering algorithms over distinct real-world case studies in biochemical
and biotechnological domains confer validity to the proposed statistical frame
while revealing vulnerabilities of some triclustering searches. The proposed
assessment can be incorporated into existing triclustering algorithms to
mitigate false positive/spurious discoveries and further prune the search
space, reducing their computational complexity.
Availability: The code is freely available at
https://github.com/JupitersMight/TriSig under the MIT license.
- Abstract(参考訳): テンソルデータ解析により、研究者はマトリックスデータだけでは得られない新しいパターンや関係を明らかにすることができる。
パターンから推測される情報は、病気の進行、生物生産過程、気象変動、グループダイナミクスに関する貴重な洞察を提供する。
しかし、突発的で冗長なパターンはこのプロセスを妨げる。
本研究の目的は、テンソルデータにおけるパターンの確率を評価するための統計的枠組みを提案し、行列データにおけるパターンの統計的意義を評価するための確立された原則を拡張することである。
偽陽性発見に対する二項テストに関する包括的議論は、変数依存性、時間依存性、不一致、およびbenjamini-hochberg 手続きによる \textit{p}-value corrections という観点から行われる。
生化学およびバイオテクノロジー領域における異なる実世界のケーススタディに対する最先端のtriclusteringアルゴリズムの適用から得られた結果は、いくつかのtriclustering検索の脆弱性を明らかにしながら、提案された統計フレームの有効性を検証している。
提案手法は,既存の3クラスタリングアルゴリズムに組み込むことで,偽陽性/盗作の発見を緩和し,さらに探索空間を縮小し,計算複雑性を低減できる。
可用性: コードはMITライセンス下でhttps://github.com/JupitersMight/TriSigで無償公開されている。
関連論文リスト
- Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Combining propensity score methods with variational autoencoders for
generating synthetic data in presence of latent sub-groups [0.0]
ヘテロジニティは、例えば、サブグループラベルによって示されるように知られ、あるいは未知であり、双曲性や歪みのような分布の性質にのみ反映されるかもしれない。
本研究では,変分オートエンコーダ(VAE)から合成データを取得する際に,このような異種性をどのように保存し,制御するかを検討する。
論文 参考訳(メタデータ) (2023-12-12T22:49:24Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
本稿では,構造空間上でインスタンス化された同変表現学習における最近の結果と,因果推論における古典的結果の簡易な利用が,いかに効果的に実現されたかを示す。
いくつかの仮定の下で、我々のモデルが複数のニュアンス変数を扱えることを実証し、そうでなければサンプルの大部分を取り除く必要のあるシナリオにおいて、プールされた科学データセットの分析を可能にする。
論文 参考訳(メタデータ) (2022-03-29T04:54:06Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
因果構造学習への現在のアプローチは、既知の介入目標を扱うか、仮説テストを使用して未知の介入目標を発見する。
本稿では、全ての介入対象を一貫して識別するスケーラブルで効率的なアルゴリズムを提案する。
提案アルゴリズムは、与えられた観測マルコフ同値クラスを介入マルコフ同値クラスに更新することも可能である。
論文 参考訳(メタデータ) (2021-11-15T03:16:56Z) - MIRACLE: Causally-Aware Imputation via Learning Missing Data Mechanisms [82.90843777097606]
欠落データに対する因果認識型計算アルゴリズム(MIRACLE)を提案する。
MIRACLEは、欠落発生機構を同時にモデル化することにより、ベースラインの計算を反復的に洗練する。
我々は、MIRACLEが一貫してイミューテーションを改善することができることを示すために、合成および様々な公開データセットに関する広範な実験を行う。
論文 参考訳(メタデータ) (2021-11-04T22:38:18Z) - Improving Efficiency and Accuracy of Causal Discovery Using a
Hierarchical Wrapper [7.570246812206772]
観測データからの因果発見は、科学の多くの分野において重要なツールである。
大規模なサンプルリミットでは、音と完全な因果探索アルゴリズムが導入されている。
しかし、これらのアルゴリズムが使用する統計的テストのパワーを制限するのは、有限のトレーニングデータのみである。
論文 参考訳(メタデータ) (2021-07-11T09:24:49Z) - Robust Matrix Completion with Mixed Data Types [0.0]
我々は,データ型が混在する部分的なエントリを持つ構造的低ランク行列を復元する問題を考察する。
ほとんどのアプローチは、基礎となる分布は1つしかないと仮定し、低階の制約は、行列 Satten Norm によって正則化される。
本稿では, 並列化に適したアルゴリズムフレームワークとともに, 高い回復保証を有する計算可能な統計手法を提案し, 混合データ型に対する部分的に観測されたエントリを持つ低階行列を1ステップで復元する。
論文 参考訳(メタデータ) (2020-05-25T21:35:10Z) - A Robust Functional EM Algorithm for Incomplete Panel Count Data [66.07942227228014]
完全無作為な仮定(MCAR)の下での数え上げ過程の平均関数を推定する機能的EMアルゴリズムを提案する。
提案アルゴリズムは、いくつかの一般的なパネル数推定手法をラップし、不完全数にシームレスに対処し、ポアソン過程の仮定の誤特定に頑健である。
本稿では, 数値実験による提案アルゴリズムの有用性と喫煙停止データの解析について述べる。
論文 参考訳(メタデータ) (2020-03-02T20:04:38Z) - Statistical Agnostic Mapping: a Framework in Neuroimaging based on
Concentration Inequalities [0.0]
ボクセルやマルチボクセルレベルでの統計アグノスティック(非パラメトリック)マッピングを導出する。
集中不平等に基づくニューロイメージングの新しい枠組みを提案する。
論文 参考訳(メタデータ) (2019-12-27T18:27:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。