論文の概要: SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL
- arxiv url: http://arxiv.org/abs/2306.00739v2
- Date: Wed, 7 Jun 2023 07:23:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-08 17:56:38.803940
- Title: SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL
- Title(参考訳): SQL-PaLM: テキストからSQLへの大規模言語モデル適応の改善
- Authors: Ruoxi Sun, Sercan O. Arik, Hootan Nakhost, Hanjun Dai, Rajarishi
Sinha, Pengcheng Yin, Tomas Pfister
- Abstract要約: 本稿では,LLMに基づくテキスト・ツー・スーツ・モデルを提案する。
実行ベースの自己整合性プロンプトアプローチに基づくSQL-PaLMはほとんどないが、まずは、微調整で従来の最先端技術を上回るパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 42.140521614846
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: One impressive emergent capability of large language models (LLMs) is
generation of code, including Structured Query Language (SQL) for databases.
For the task of converting natural language text to SQL queries, Text-to-SQL,
adaptation of LLMs is of paramount importance, both in in-context learning and
fine-tuning settings, depending on the amount of adaptation data used. In this
paper, we propose an LLM-based Text-to-SQL model SQL-PaLM, leveraging on
PaLM-2, that pushes the state-of-the-art in both settings. Few-shot SQL-PaLM is
based on an execution-based self-consistency prompting approach designed for
Text-to-SQL, and achieves 77.3% in test-suite accuracy on Spider, which to our
best knowledge is the first to outperform previous state-of-the-art with
fine-tuning by a significant margin, 4%. Furthermore, we demonstrate that the
fine-tuned SQL-PALM outperforms it further by another 1%. Towards applying
SQL-PaLM to real-world scenarios we further evaluate its robustness on other
challenging variants of Spider and demonstrate the superior generalization
capability of SQL-PaLM. In addition, via extensive case studies, we demonstrate
the impressive intelligent capabilities and various success enablers of
LLM-based Text-to-SQL.
- Abstract(参考訳): 大きな言語モデル(LLM)の目覚ましい機能の1つは、データベース用の構造化クエリ言語(SQL)を含むコードの生成である。
自然言語テキストをSQLクエリに変換するタスクでは、テキストからSQLへの変換、LLMの適応は、使用する適応データ量に応じて、コンテキスト内学習と微調整設定の両方において最重要となる。
本稿では,PaLM-2 を利用した LLM ベースの Text-to-SQL モデル SQL-PaLM を提案する。
Few-shot SQL-PaLMは、Text-to-SQL用に設計された実行ベースの自己整合性プロンプトアプローチに基づいており、Spiderで77.3%の精度を実現している。
さらに、微調整SQL-PALMがさらに1%向上することを示した。
SQL-PaLMを現実のシナリオに適用する上で、他の課題であるSpiderの堅牢性をさらに評価し、SQL-PaLMの優れた一般化能力を実証する。
さらに,広範なケーススタディを通じて,llmベースのテキスト・ツー・sqlの知的能力と様々な成功可能性を示す。
関連論文リスト
- Enhancing LLM Fine-tuning for Text-to-SQLs by SQL Quality Measurement [1.392448435105643]
Text-to-sにより、専門家でないユーザは、自然言語クエリを使用してデータベースから要求された情報を取得することができる。
GPT4やT5のような現在の最先端(SOTA)モデルは、BIRDのような大規模ベンチマークで素晴らしいパフォーマンスを示している。
本稿では,テキスト・ツー・ス・パフォーマンスを向上させるためにSQL Qualityのみを必要とする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-10-02T17:21:51Z) - SQLfuse: Enhancing Text-to-SQL Performance through Comprehensive LLM Synergy [24.919119901664843]
本稿では,オープンソースのLarge Language Models(LLM)を,クエリの精度とユーザビリティを高めるための一連のツールに統合する,堅牢なシステムを提案する。
Ant GroupによるSpider Leaderboardとデプロイメントのリードパフォーマンスによって実証された。
論文 参考訳(メタデータ) (2024-07-19T06:01:57Z) - RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
文脈内学習を伴う大規模言語モデル(LLM)は、テキスト・ツー・タスクの性能を大幅に改善した。
In-context prompt Engineering のための新しい検索ベースフレームワーク RB- を提案する。
実験により,我々のモデルは,公開データセットのBIRDとSpiderの競合ベースラインよりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2024-07-11T08:19:58Z) - RH-SQL: Refined Schema and Hardness Prompt for Text-to-SQL [1.734218686180302]
本稿では,精製実行モデルとハードネス・プロンプトに基づくテキスト・トゥ・エクセルの手法を提案する。
パフォーマンスを維持しながら、ストレージとトレーニングのコストを削減する。
スパイダーデータセットに関する我々の実験は、特に大規模なLMを用いて、82.6%の異常な精度(EX)を達成した。
論文 参考訳(メタデータ) (2024-06-13T14:04:34Z) - Next-Generation Database Interfaces: A Survey of LLM-based Text-to-SQL [15.75829309721909]
自然言語の質問(text-to-)から正確なsqlを生成することは、長年にわたる課題である。
PLMはテキスト・ツー・タスクに利用され、有望な性能を実現している。
近年,大規模言語モデル (LLM) は自然言語理解において重要な機能を示している。
論文 参考訳(メタデータ) (2024-06-12T17:13:17Z) - SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data [54.69489315952524]
Prompt"は、Text-to-LLMのいくつかのショットプロンプト機能を改善するように設計されている。
Prompt"は、ラベル付きデータが少なく、テキスト内学習における従来のアプローチよりも大きなマージンで優れている。
emphPromptはテキスト内学習における従来の手法よりも優れており,ラベル付きデータはほとんどない。
論文 参考訳(メタデータ) (2023-11-06T05:24:06Z) - Reboost Large Language Model-based Text-to-SQL, Text-to-Python, and
Text-to-Function -- with Real Applications in Traffic Domain [14.194710636073808]
これまでのSOTA(State-of-the-art)手法は、スパイダーデータセット上で顕著な実行精度を達成した。
より適応的で汎用的なプロンプト手法を開発し、クエリの書き直しとsqlの高速化を行う。
ビジネスデータセットの実行精度については,SOTA法が21.05,我々のアプローチが65.79であった。
論文 参考訳(メタデータ) (2023-10-28T16:32:40Z) - Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation [76.76046657162306]
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
論文 参考訳(メタデータ) (2023-08-29T14:59:54Z) - Towards Generalizable and Robust Text-to-SQL Parsing [77.18724939989647]
本稿では,タスク分解,知識獲得,知識構成からなる新しいTKKフレームワークを提案する。
このフレームワークは,Spider,SParC,Co.データセット上でのすべてのシナリオと最先端のパフォーマンスに有効であることを示す。
論文 参考訳(メタデータ) (2022-10-23T09:21:27Z) - S$^2$SQL: Injecting Syntax to Question-Schema Interaction Graph Encoder
for Text-to-SQL Parsers [66.78665327694625]
テキスト-関係解析のための質問-エンコーダグラフに構文を注入するS$2$を提案する。
また、疎結合制約を用いて多様なエッジ埋め込みを誘導し、ネットワークの性能をさらに向上させる。
スパイダーとロバスト性設定の実験は、提案手法が事前学習モデルを使用する場合、既存のすべての手法より優れていることを示した。
論文 参考訳(メタデータ) (2022-03-14T09:49:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。