論文の概要: Recent Advances in Graph-based Machine Learning for Applications in
Smart Urban Transportation Systems
- arxiv url: http://arxiv.org/abs/2306.01282v1
- Date: Fri, 2 Jun 2023 05:50:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-05 16:45:40.917777
- Title: Recent Advances in Graph-based Machine Learning for Applications in
Smart Urban Transportation Systems
- Title(参考訳): スマート都市交通システムにおけるグラフベース機械学習の最近の進歩
- Authors: Hongde Wu, Sen Yan, Mingming Liu
- Abstract要約: 本章では、ITS設計における重要な技術的課題に関する背景情報と研究手法のレビューを紹介する。
グラフベースの機械学習手法について,グラフの基本概念,グラフデータ表現,グラフニューラルネットワークアーキテクチャ,およびそれらのITSアプリケーションとの関係を詳細に検討する。
- 参考スコア(独自算出の注目度): 7.335098632782098
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Intelligent Transportation System (ITS) is an important part of modern
transportation infrastructure, employing a combination of communication
technology, information processing and control systems to manage transportation
networks. This integration of various components such as roads, vehicles, and
communication systems, is expected to improve efficiency and safety by
providing better information, services, and coordination of transportation
modes. In recent years, graph-based machine learning has become an increasingly
important research focus in the field of ITS aiming at the development of
complex, data-driven solutions to address various ITS-related challenges. This
chapter presents background information on the key technical challenges for ITS
design, along with a review of research methods ranging from classic
statistical approaches to modern machine learning and deep learning-based
approaches. Specifically, we provide an in-depth review of graph-based machine
learning methods, including basic concepts of graphs, graph data
representation, graph neural network architectures and their relation to ITS
applications. Additionally, two case studies of graph-based ITS applications
proposed in our recent work are presented in detail to demonstrate the
potential of graph-based machine learning in the ITS domain.
- Abstract(参考訳): インテリジェント・トランスポーテーション・システム(its)は現代の交通インフラの重要な部分であり、通信技術と情報処理と制御システムを組み合わせて輸送ネットワークを管理する。
道路、車両、通信システムなどの様々なコンポーネントの統合は、より良い情報、サービス、輸送モードの調整を提供することで、効率と安全性を向上させることが期待されている。
近年、グラフベースの機械学習は、様々なITS関連の課題に対処する複雑なデータ駆動型ソリューションの開発を目指すITS分野において、ますます重要な研究対象となっている。
本章では,ITS設計における重要な技術的課題の背景と,古典的な統計的アプローチから現代的な機械学習,ディープラーニングに基づくアプローチまで,研究手法の見直しについて述べる。
具体的には、グラフの基本概念、グラフデータ表現、グラフニューラルネットワークアーキテクチャおよびそれらのITSアプリケーションとの関係を含む、グラフベースの機械学習手法の詳細なレビューを提供する。
さらに、最近の研究で提案されているグラフベースITSアプリケーションの2つのケーススタディを詳述し、ITS領域におけるグラフベース機械学習の可能性を示す。
関連論文リスト
- Customized Information and Domain-centric Knowledge Graph Construction with Large Language Models [0.0]
本稿では,構造化情報へのタイムリーなアクセスを実現するための知識グラフに基づく新しいアプローチを提案する。
本フレームワークは,情報検索,キーフレーズ抽出,セマンティックネットワーク生成,トピックマップ可視化などを含むテキストマイニングプロセスを含む。
当社の方法論を自動車電気システムの領域に適用して,スケーラブルなアプローチを実証する。
論文 参考訳(メタデータ) (2024-09-30T07:08:28Z) - Privacy-Preserving Graph Machine Learning from Data to Computation: A
Survey [67.7834898542701]
我々は,グラフ機械学習のプライバシ保護手法の見直しに重点を置いている。
まずプライバシ保護グラフデータを生成する方法を検討する。
次に,プライバシ保護情報を送信する方法について述べる。
論文 参考訳(メタデータ) (2023-07-10T04:30:23Z) - Topics in Deep Learning and Optimization Algorithms for IoT Applications
in Smart Transportation [0.0]
この論文は、最適化アルゴリズムと機械学習の異なる手法をどのように活用してシステム性能を向上するかを考察する。
第1のトピックでは、分散ADMM方式を用いた最適な伝送周波数管理方式を提案する。
第2のトピックでは、共有自転車の需要予測にグラフニューラルネットワーク(GNN)を活用する。
最後のトピックでは、頻繁に車線変更行動が発生するハイウェイ交通ネットワークのシナリオについて考察する。
論文 参考訳(メタデータ) (2022-10-13T11:45:30Z) - Intelligent Traffic Monitoring with Hybrid AI [78.65479854534858]
マルチモーダルコンテキスト理解のためのニューロシンボリックアーキテクチャであるHANSを紹介する。
HANSが交通監視に関わる課題にどのように対処するかを示すとともに,幅広い推論手法と統合可能であることを示す。
論文 参考訳(メタデータ) (2022-08-31T17:47:22Z) - Retrieval-Enhanced Machine Learning [110.5237983180089]
本稿では,いくつかの既存モデルを含む汎用的な検索強化機械学習フレームワークについて述べる。
REMLは情報検索の慣例に挑戦し、最適化を含む中核領域における新たな進歩の機会を提示している。
REMLリサーチアジェンダは、情報アクセス研究の新しいスタイルの基礎を築き、機械学習と人工知能の進歩への道を開く。
論文 参考訳(メタデータ) (2022-05-02T21:42:45Z) - Towards Machine Learning for Placement and Routing in Chip Design: a
Methodological Overview [72.79089075263985]
配置とルーティングは、現代のチップ設計フローにおいて必須かつ困難な2つのタスクである。
機械学習は、そのデータ駆動性によって有望な見通しを示しており、知識や事前への依存度は低い。
論文 参考訳(メタデータ) (2022-02-28T06:28:44Z) - Automated Graph Machine Learning: Approaches, Libraries, Benchmarks and Directions [58.220137936626315]
本稿では,グラフ機械学習の自動手法について論じる。
当社の専用かつ世界初のグラフ機械学習のためのオープンソースライブラリであるAutoGLを紹介します。
また、統一的で再現性があり、効率的な評価をサポートする調整されたベンチマークについて述べる。
論文 参考訳(メタデータ) (2022-01-04T18:31:31Z) - Making a Case for Federated Learning in the Internet of Vehicles and
Intelligent Transportation Systems [6.699060157800401]
車両のインターネット(IoV)はインテリジェント交通システム(ITS)に変換されます。
これらの課題に対処するために,協調的分散知能技術である連合学習が提案されている。
多数のユースケースとメリットを備えたFederated Learningは、ITSの重要なイネーブラーであり、5Gおよびネットワークやアプリケーションを超えて広く実装される予定です。
論文 参考訳(メタデータ) (2021-02-19T20:07:17Z) - Smart Grid: A Survey of Architectural Elements, Machine Learning and
Deep Learning Applications and Future Directions [0.0]
ビッグデータ分析、機械学習(ML)、ディープラーニング(DL)は、この膨大なデータの分析と貴重な洞察の生成において重要な役割を果たす。
本稿では、スマートグリッドのコンテキストにおいて、スマートグリッドアーキテクチャ要素、機械学習、ディープラーニングベースのアプリケーションおよびアプローチを調査し、調査する。
論文 参考訳(メタデータ) (2020-10-16T01:40:24Z) - Graph signal processing for machine learning: A review and new
perspectives [57.285378618394624]
本稿では,GSPの概念とツール,例えばグラフフィルタや変換による新しい機械学習アルゴリズム開発への重要な貢献について概説する。
本稿では,データ構造とリレーショナル事前の活用,データと計算効率の向上,モデル解釈可能性の向上について論じる。
我々は,応用数学と信号処理の橋渡しとなるGSP技術と,他方の機械学習とネットワーク科学の橋渡しとなる新たな視点を提供する。
論文 参考訳(メタデータ) (2020-07-31T13:21:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。