論文の概要: EmoUS: Simulating User Emotions in Task-Oriented Dialogues
- arxiv url: http://arxiv.org/abs/2306.01579v1
- Date: Fri, 2 Jun 2023 14:48:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-05 14:41:58.377408
- Title: EmoUS: Simulating User Emotions in Task-Oriented Dialogues
- Title(参考訳): Emous:タスク指向対話におけるユーザ感情のシミュレーション
- Authors: Hsien-Chin Lin, Shutong Feng, Christian Geishauser, Nurul Lubis, Carel
van Niekerk, Michael Heck, Benjamin Ruppik, Renato Vukovic, Milica
Ga\v{s}i\'c
- Abstract要約: EmoUSは、ユーザの行動とともにユーザの感情をシミュレートすることを学ぶユーザーシミュレータである。
どのようなシステム行動がどのようなユーザー感情を引き起こすかを分析することで、様々な対話システムを評価するためのプローブとしてEmoUSが利用できることを示す。
- 参考スコア(独自算出の注目度): 2.3555053092246125
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Existing user simulators (USs) for task-oriented dialogue systems only model
user behaviour on semantic and natural language levels without considering the
user persona and emotions. Optimising dialogue systems with generic user
policies, which cannot model diverse user behaviour driven by different
emotional states, may result in a high drop-off rate when deployed in the real
world. Thus, we present EmoUS, a user simulator that learns to simulate user
emotions alongside user behaviour. EmoUS generates user emotions, semantic
actions, and natural language responses based on the user goal, the dialogue
history, and the user persona. By analysing what kind of system behaviour
elicits what kind of user emotions, we show that EmoUS can be used as a probe
to evaluate a variety of dialogue systems and in particular their effect on the
user's emotional state. Developing such methods is important in the age of
large language model chat-bots and rising ethical concerns.
- Abstract(参考訳): タスク指向対話システムのための既存のユーザシミュレータ(US)は、ユーザペルソナや感情を考慮せずに、意味的および自然言語レベルでのユーザ行動のみをモデル化する。
感情状態の異なる多様なユーザ動作をモデル化できない汎用ユーザポリシーによる対話システムの最適化は、現実世界に展開する際の高いドロップオフ率をもたらす可能性がある。
そこで本稿では,ユーザの行動とともにユーザの感情をシミュレートするユーザシミュレータEmoUSを紹介する。
emousは、ユーザの目標、対話履歴、およびユーザペルソナに基づいて、ユーザの感情、セマンティックアクション、自然言語応答を生成する。
システム行動がどのようなユーザの感情を誘発するかを分析することにより,emousは多様な対話システム,特にユーザの感情状態に対する影響を評価するプローブとして使用できることを示す。
このような手法の開発は、大規模言語モデルチャットボットの時代と倫理的懸念の高まりにおいて重要である。
関連論文リスト
- Towards Empathetic Conversational Recommender Systems [77.53167131692]
本稿では,共感型会話レコメンデータ(ECR)フレームワークを提案する。
ECRには、感情対応アイテムレコメンデーションと感情対応応答生成という、2つの主要なモジュールが含まれている。
ReDialデータセットの実験は、推奨精度を高め、ユーザの満足度を向上させる上で、我々のフレームワークの有効性を検証する。
論文 参考訳(メタデータ) (2024-08-30T15:43:07Z) - Infusing Emotions into Task-oriented Dialogue Systems: Understanding, Management, and Generation [6.377334634656281]
感情は人間のコミュニケーションには不可欠であるが、タスク指向対話(ToD)モデリングでは見過ごされがちである。
本研究では,完全なToD処理ループに感情を組み込み,理解,管理,生成を行う。
提案手法がユーザの感情経験とタスク成功を著しく向上させることを示す。
論文 参考訳(メタデータ) (2024-08-05T12:21:04Z) - Personality-affected Emotion Generation in Dialog Systems [67.40609683389947]
ダイアログシステムに与えられた個性に基づいて感情を生成する新しいタスクであるパーソナリティ影響感情生成を提案する。
本課題の課題,すなわち,(1)個性と感情的要因を不均一に統合し,(2)対話場面における多粒性感情情報を抽出する。
その結果,感情生成性能はマクロF1では13%,重み付きF1では5%向上することが示唆された。
論文 参考訳(メタデータ) (2024-04-03T08:48:50Z) - Think Twice: A Human-like Two-stage Conversational Agent for Emotional Response Generation [16.659457455269127]
感情対話生成のための2段階対話エージェントを提案する。
まず,感情アノテートされた対話コーパスを使わずに訓練された対話モデルを用いて,文脈意味に合致するプロトタイプ応答を生成する。
第二に、第一段階のプロトタイプは共感仮説で制御可能な感情精錬器によって修正される。
論文 参考訳(メタデータ) (2023-01-12T10:03:56Z) - Empathetic Dialogue Generation via Sensitive Emotion Recognition and
Sensible Knowledge Selection [47.60224978460442]
情緒的対話生成のためのシリアル・アンド・感情知識相互作用(SEEK)法を提案する。
我々は,会話中の感情のダイナミックス(感情の流れ)に敏感な微粒なエンコーディング戦略を用いて,応答の感情依存特性を予測するとともに,知識と感情の相互作用をモデル化し,より敏感な応答を生成する新しい枠組みを設計する。
論文 参考訳(メタデータ) (2022-10-21T03:51:18Z) - Empathetic Response Generation with State Management [32.421924357260075]
共感的反応生成の目標は、会話における感情を知覚し表現する対話システムの能力を高めることである。
感情や意図を含む複数の状態情報を同時に考察できる新しい共感応答生成モデルを提案する。
実験の結果、異なる情報を動的に管理することは、モデルがより共感的な反応を生成するのに役立つことが示された。
論文 参考訳(メタデータ) (2022-05-07T16:17:28Z) - Towards Multi-Turn Empathetic Dialogs with Positive Emotion Elicitation [39.747587984500406]
本稿では,肯定的な感情誘発を伴う共感的対話生成の課題について述べる。
エージェントは、マルチターンダイアログにおいて、ユーザのポジティブ感情を引き出すターゲットとともに共感応答を行う。
我々はPosEmoDialと呼ばれる肯定的な感情誘発を伴う大規模感情対話データセットを収集する。
論文 参考訳(メタデータ) (2022-04-22T05:32:08Z) - Chat-Capsule: A Hierarchical Capsule for Dialog-level Emotion Analysis [70.98130990040228]
本稿では,発話レベルと対話レベルの両方の感情とその相互関係をモデル化したコンテキストベースの階層的注意カプセル(Chat-Capsule)モデルを提案する。
Eコマースプラットフォームの顧客サポートから収集したダイアログデータセットでは,ユーザの満足度や感情曲線のカテゴリも予測できる。
論文 参考訳(メタデータ) (2022-03-23T08:04:30Z) - User Satisfaction Estimation with Sequential Dialogue Act Modeling in
Goal-oriented Conversational Systems [65.88679683468143]
我々は,ユーザ満足度を予測するために,対話行動の逐次的ダイナミクスを取り入れた新しいフレームワーク,すなわちUSDAを提案する。
USDAは、ユーザの満足度を予測するために、コンテンツと行動機能の連続的な遷移を対話に取り入れている。
4つのベンチマーク目標指向対話データセットによる実験結果から,提案手法はUSEの既存手法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2022-02-07T02:50:07Z) - Automatically Select Emotion for Response via Personality-affected
Emotion Transition [0.0]
ダイアログシステムは、人間のような反応に対する適切な感情を自動的に選択できるべきです。
既存のほとんどの研究は、特定の感情を反応のレンダリングやユーザーの感情に共感的に反応させることに重点を置いているが、感情表現の個人差は見過ごされている。
対話システムに人格を付与し、会話中の人間の感情遷移をシミュレートすることで、応答中の感情を自動的に選択できるようにする。
論文 参考訳(メタデータ) (2021-06-30T07:00:42Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
この記事では、投稿中のセマンティクスと感情を同時にエンコードできる、未定義のエンドツーエンドニューラルネットワークを提案する。
実世界のデータを用いた実験により,提案手法は,コンテンツコヒーレンスと感情の適切性の両方の観点から,最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-06T06:26:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。