論文の概要: Exploring Robustness of Image Recognition Models on Hardware Accelerators
- arxiv url: http://arxiv.org/abs/2306.01697v6
- Date: Tue, 25 Mar 2025 13:08:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:52:29.552430
- Title: Exploring Robustness of Image Recognition Models on Hardware Accelerators
- Title(参考訳): ハードウェア加速器における画像認識モデルのロバスト性探索
- Authors: Nikolaos Louloudakis, Perry Gibson, José Cano, Ajitha Rajan,
- Abstract要約: MutateNNは、画像認識モデルの堅牢性を調べるために、差分テストと突然変異テストの両方の要素を利用するツールである。
画像認識領域は、7つの確立されたDNNモデルに突然変異試験を適用し、6つの異なるカテゴリの21の突然変異を導入し、画像認識領域に焦点をあてる。
その結果, 層修飾, 算術型, 入力に関連する変異が全体のモデル性能(最大99.8%)に深刻な影響を及ぼすか, あるいはモデルクラッシュを引き起こした。
- 参考スコア(独自算出の注目度): 2.379078565066793
- License:
- Abstract: As the usage of Artificial Intelligence (AI) on resource-intensive and safety-critical tasks increases, a variety of Machine Learning (ML) compilers have been developed, enabling compatibility of Deep Neural Networks (DNNs) with a variety of hardware acceleration devices. However, given that DNNs are widely utilized for challenging and demanding tasks, the behavior of these compilers must be verified. To this direction, we propose MutateNN, a tool that utilizes elements of both differential and mutation testing in order to examine the robustness of image recognition models when deployed on hardware accelerators with different capabilities, in the presence of faults in their target device code - introduced either by developers, or problems in their compilation process. We focus on the image recognition domain by applying mutation testing to 7 well-established DNN models, introducing 21 mutations of 6 different categories. We deployed our mutants on 4 different hardware acceleration devices of varying capabilities and observed that DNN models presented discrepancies of up to 90.3% in mutants related to conditional operators across devices. We also observed that mutations related to layer modification, arithmetic types and input affected severely the overall model performance (up to 99.8%) or led to model crashes, in a consistent manner across devices.
- Abstract(参考訳): 資源集約的かつ安全クリティカルなタスクにおける人工知能(AI)の使用の増加に伴い、さまざまな機械学習(ML)コンパイラが開発され、Deep Neural Networks(DNN)とさまざまなハードウェアアクセラレーションデバイスとの互換性が実現されている。
しかし、DNNは課題や要求のあるタスクに広く利用されているため、これらのコンパイラの動作を検証する必要がある。
そこで本研究では,ディファレンシャルテストと突然変異テストの両方の要素を活用するツールであるMutateNNを提案し,異なる機能を持つハードウェアアクセラレータにデプロイする際の画像認識モデルのロバスト性を,対象デバイスコードに欠陥が存在する場合,開発者によって導入されるか,コンパイルプロセスの問題点に対処する。
7つのDNNモデルに突然変異試験を適用し、6つのカテゴリの21の突然変異を導入し、画像認識領域に焦点を当てた。
異なる機能を持つ4種類のハードウェアアクセラレーションデバイスにミュータントをデプロイし、DNNモデルがデバイス間の条件演算子に関連するミュータントで最大90.3%の差を示したことを観察した。
また、レイヤー修正、算術型、入力に関連する変異が全体のモデル性能(最大99.8%)に深刻な影響を与え、デバイス間で一貫した方法でモデルクラッシュを引き起こしたことも観察した。
関連論文リスト
- On the locality bias and results in the Long Range Arena [49.15148871877941]
Long Range ArenaベンチマークはTransformerの改良性能を評価するために設計された。
ステート・スペース・モデル(SSM)のような新しいアーキテクチャは、LRAのトランスフォーマーよりも優れていた。
LRAは長距離依存モデリングのベンチマークであるが、実際にはほとんどのパフォーマンスは短距離依存によるものである。
論文 参考訳(メタデータ) (2025-01-24T15:34:50Z) - SIDDA: SInkhorn Dynamic Domain Adaptation for Image Classification with Equivariant Neural Networks [37.69303106863453]
SIDDA は Sinkhorn の発散に基づいて構築された DA トレーニングアルゴリズムである。
SIDDAはNNの一般化能力を向上する。
また,二面体群$D_N$の群順の変動に関して,SIDDAの有効性について検討した。
論文 参考訳(メタデータ) (2025-01-23T19:29:34Z) - Genetic Motifs as a Blueprint for Mismatch-Tolerant Neuromorphic Computing [1.8292454465322363]
SNNの混合信号実装はエッジコンピューティングアプリケーションに有望なソリューションを提供する。
これらのニューロモルフィックプロセッサのアナログ回路におけるデバイスミスマッチは、堅牢な処理の展開に重大な課題をもたらす。
この問題に対処するために,生物開発に触発された新しいアーキテクチャソリューションを導入する。
論文 参考訳(メタデータ) (2024-10-25T09:04:50Z) - Cal-DETR: Calibrated Detection Transformer [67.75361289429013]
本稿では,Deformable-DETR,UP-DETR,DINOのキャリブレーション検出トランス(Cal-DETR)のメカニズムを提案する。
我々は、不確実性を利用してクラスロジットを変調する不確実性誘導ロジット変調機構を開発する。
その結果、Cal-DETRは、ドメイン内およびドメイン外の両方を校正する競合する列車時間法に対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-11-06T22:13:10Z) - Full Stack Optimization of Transformer Inference: a Survey [58.55475772110702]
トランスフォーマーモデルは広範囲のアプリケーションにまたがって優れた精度を実現する。
最近のTransformerモデルの推測に必要な計算量と帯域幅は、かなり増加しています。
Transformerモデルをより効率的にすることに注力している。
論文 参考訳(メタデータ) (2023-02-27T18:18:13Z) - T4PdM: a Deep Neural Network based on the Transformer Architecture for
Fault Diagnosis of Rotating Machinery [0.0]
本稿では,Transformerアーキテクチャの修正版であるT4PdMに基づいて,自動故障分類器モデルを構築した。
T4PdMは2つのデータセットの総合精度99.98%と98%を達成した。
回転する産業機械の故障の検出・分類におけるモデルの有用性を実証した。
論文 参考訳(メタデータ) (2022-04-07T20:31:45Z) - Factorizer: A Scalable Interpretable Approach to Context Modeling for
Medical Image Segmentation [6.030648996110607]
この研究はFacterizerと呼ばれるモデルのファミリーを導入し、エンド・ツー・エンドのセグメンテーション・モデルを構築するために低ランク行列係数化の力を利用する。
具体的には、U字型アーキテクチャに組み込まれた微分可能な層として非負行列因子化(NMF)を定式化する、コンテキストモデリングに対する線形スケーラブルなアプローチを提案する。
ファクターは精度、スケーラビリティ、解釈可能性の点でCNNやTransformerと良好に競合する。
論文 参考訳(メタデータ) (2022-02-24T18:51:19Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - On the benefits of robust models in modulation recognition [53.391095789289736]
畳み込み層を用いたディープニューラルネットワーク(DNN)は、通信における多くのタスクにおいて最先端である。
画像分類のような他の領域では、DNNは敵の摂動に弱いことが示されている。
最新モデルの堅牢性をテストするための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-27T19:58:06Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
機械学習(ML)と人工知能(AI)はITシステムの運用とメンテナンスに適用される。
1つの方向は、修復自動化を可能にするために、繰り返し発生する異常タイプを認識することである。
与えられたデータの次元変化に不変な手法を提案する。
論文 参考訳(メタデータ) (2021-02-25T14:24:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。