論文の概要: Unlearnable Examples for Diffusion Models: Protect Data from
Unauthorized Exploitation
- arxiv url: http://arxiv.org/abs/2306.01902v1
- Date: Fri, 2 Jun 2023 20:19:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-06 23:22:29.523471
- Title: Unlearnable Examples for Diffusion Models: Protect Data from
Unauthorized Exploitation
- Title(参考訳): 拡散モデルの理解不能な例:不正な搾取からデータを保護する
- Authors: Zhengyue Zhao, Jinhao Duan, Xing Hu, Kaidi Xu, Chenan Wang, Rui Zhang,
Zidong Du, Qi Guo, Yunji Chen
- Abstract要約: 本研究では,不正な利用から画像を保護するために,Unlearnable Diffusion Perturbationを提案する。
この成果は、AI生成コンテンツに対するプライバシーと著作権の保護に寄与するため、現実世界のシナリオにおいて重要な意味を持つ。
- 参考スコア(独自算出の注目度): 20.47099939773165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have demonstrated remarkable performance in image generation
tasks, paving the way for powerful AIGC applications. However, these
widely-used generative models can also raise security and privacy concerns,
such as copyright infringement, and sensitive data leakage. To tackle these
issues, we propose a method, Unlearnable Diffusion Perturbation, to safeguard
images from unauthorized exploitation. Our approach involves designing an
algorithm to generate sample-wise perturbation noise for each image to be
protected. This imperceptible protective noise makes the data almost
unlearnable for diffusion models, i.e., diffusion models trained or fine-tuned
on the protected data cannot generate high-quality and diverse images related
to the protected training data. Theoretically, we frame this as a max-min
optimization problem and introduce EUDP, a noise scheduler-based method to
enhance the effectiveness of the protective noise. We evaluate our methods on
both Denoising Diffusion Probabilistic Model and Latent Diffusion Models,
demonstrating that training diffusion models on the protected data lead to a
significant reduction in the quality of the generated images. Especially, the
experimental results on Stable Diffusion demonstrate that our method
effectively safeguards images from being used to train Diffusion Models in
various tasks, such as training specific objects and styles. This achievement
holds significant importance in real-world scenarios, as it contributes to the
protection of privacy and copyright against AI-generated content.
- Abstract(参考訳): 拡散モデルは画像生成タスクにおいて顕著な性能を示し、強力なAIGCアプリケーションへの道を開いた。
しかし、これらの広く使われている生成モデルは、著作権侵害や機密データ漏洩など、セキュリティやプライバシーの懸念を引き起こす可能性がある。
これらの問題に対処するため,我々は,画像の不正利用から保護するための無理解拡散摂動法を提案する。
提案手法では,各画像が保護されるサンプル回りの摂動ノイズを発生させるアルゴリズムを設計する。
この知覚不能な保護ノイズは、拡散モデル、すなわち、保護データ上で訓練または微調整された拡散モデルは、保護されたトレーニングデータに関連する高品質で多様な画像を生成することができない。
理論的には、これを最大限の最適化問題とみなし、保護雑音の有効性を高めるためのノイズスケジューラに基づくEUDPを導入する。
本手法は拡散確率モデルと潜在拡散モデルの両方について評価し,保護されたデータに対する拡散モデルの訓練が生成画像の品質を著しく低下させることを示した。
特に,安定拡散に関する実験結果は,特定の物体やスタイルを訓練するなど,様々なタスクにおける拡散モデルの訓練に画像を使用することを効果的に防止できることを実証する。
この成果は、AI生成コンテンツに対するプライバシーと著作権の保護に寄与するため、現実世界のシナリオにおいて重要な意味を持つ。
関連論文リスト
- Towards Reliable Verification of Unauthorized Data Usage in Personalized Text-to-Image Diffusion Models [23.09033991200197]
新しいパーソナライズ技術は、特定のテーマやスタイルのイメージを作成するために、事前訓練されたベースモデルをカスタマイズするために提案されている。
このような軽量なソリューションは、パーソナライズされたモデルが不正なデータからトレーニングされているかどうかに関して、新たな懸念を生じさせる。
我々は、ブラックボックスパーソナライズされたテキスト・ツー・イメージ拡散モデルにおいて、不正なデータ使用を積極的に追跡する新しい手法であるSIRENを紹介する。
論文 参考訳(メタデータ) (2024-10-14T12:29:23Z) - Pixel Is Not A Barrier: An Effective Evasion Attack for Pixel-Domain Diffusion Models [9.905296922309157]
拡散モデルは高品質な画像合成のための強力な生成モデルとして登場し、それに基づく画像編集技術も数多くある。
従来の研究は、知覚不能な摂動を加えることで、画像の拡散に基づく編集を防ごうとしてきた。
本研究は,UNETの脆弱性を悪用した特徴表現攻撃損失と,保護された画像の自然性を高めるための潜在最適化戦略を備えた,新たな攻撃フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-21T17:56:34Z) - DDAP: Dual-Domain Anti-Personalization against Text-to-Image Diffusion Models [18.938687631109925]
拡散に基づくパーソナライズされたビジュアルコンテンツ生成技術は、大きなブレークスルーを達成した。
しかし、偽のニュースや個人をターゲットとするコンテンツを作るのに誤用された場合、これらの技術は社会的な危害をもたらす可能性がある。
本稿では,新しいDual-Domain Anti-Personalization framework(DDAP)を紹介する。
これら2つの手法を交互に組み合わせることで、DDAPフレームワークを構築し、両方のドメインの強みを効果的に活用する。
論文 参考訳(メタデータ) (2024-07-29T16:11:21Z) - EnTruth: Enhancing the Traceability of Unauthorized Dataset Usage in Text-to-image Diffusion Models with Minimal and Robust Alterations [73.94175015918059]
本稿では、未承認のデータセット使用のトレーサビリティを高める新しいアプローチであるEnTruthを紹介する。
テンプレートの暗記を戦略的に取り入れることで、EnTruthは不正なモデルの特定の振る舞いを侵害の証拠として引き起こすことができる。
本手法は, 暗記の正当性を調査し, 著作権保護に利用し, 呪いを祝福する最初の方法である。
論文 参考訳(メタデータ) (2024-06-20T02:02:44Z) - Erasing Undesirable Influence in Diffusion Models [51.225365010401006]
拡散モデルは高品質な画像を生成するのに非常に効果的であるが、NSFW(職場では安全ではない)コンテンツの意図しない生成のようなリスクを引き起こす。
本研究では,データに関連付けられた不要な情報を取り除き,保存データに対する拡散モデルの実用性を維持するために設計されたアルゴリズムであるEraseDiffを紹介する。
論文 参考訳(メタデータ) (2024-01-11T09:30:36Z) - Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent
Diffusion Model [61.53213964333474]
本稿では,生の画素空間ではなく,潜在空間における非知覚的対角的アイデンティティ摂動を生成できる統一的なフレームワークAdv-Diffusionを提案する。
具体的には,周囲のセマンティックな摂動を生成するために,個人性に敏感な条件付き拡散生成モデルを提案する。
設計された適応強度に基づく対向摂動アルゴリズムは、攻撃の伝達性とステルス性の両方を確保することができる。
論文 参考訳(メタデータ) (2023-12-18T15:25:23Z) - The Journey, Not the Destination: How Data Guides Diffusion Models [75.19694584942623]
大規模なデータセットでトレーニングされた拡散モデルは、顕著な品質と多様性のフォトリアリスティックなイメージを合成することができる。
i)拡散モデルの文脈でデータ属性の形式的概念を提供し、(ii)そのような属性を反実的に検証することを可能にする枠組みを提案する。
論文 参考訳(メタデータ) (2023-12-11T08:39:43Z) - Can Protective Perturbation Safeguard Personal Data from Being Exploited by Stable Diffusion? [21.75921532822961]
元の画像構造を保ちながら保護された摂動を除去できる浄化方法を提案する。
実験により、安定拡散は、すべての保護方法において、精製された画像から効果的に学習できることが判明した。
論文 参考訳(メタデータ) (2023-11-30T07:17:43Z) - IMPRESS: Evaluating the Resilience of Imperceptible Perturbations
Against Unauthorized Data Usage in Diffusion-Based Generative AI [52.90082445349903]
拡散ベースの画像生成モデルは、アーティストのスタイルを模倣するアートイメージを作成したり、偽のコンテンツのためにオリジナルの画像を悪意を持って編集することができる。
知覚不能な摂動を追加することによって、元のイメージをそのような不正なデータ使用から保護する試みがいくつかなされている。
本研究では, IMPRESS という浄化摂動プラットフォームを導入し, 非受容性摂動の有効性を保護策として評価する。
論文 参考訳(メタデータ) (2023-10-30T03:33:41Z) - DIAGNOSIS: Detecting Unauthorized Data Usages in Text-to-image Diffusion Models [79.71665540122498]
保護されたデータセットにインジェクトされたコンテンツを配置することで、不正なデータ利用を検出する手法を提案する。
具体的には、ステルス画像ワープ機能を用いて、これらの画像にユニークな内容を追加することにより、保護された画像を修正する。
このモデルが注入されたコンテンツを記憶したかどうかを解析することにより、不正に不正に使用したモデルを検出することができる。
論文 参考訳(メタデータ) (2023-07-06T16:27:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。