論文の概要: On the feasibility of performing quantum chemistry calculations on quantum computers
- arxiv url: http://arxiv.org/abs/2306.02620v3
- Date: Thu, 03 Oct 2024 07:05:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-04 23:28:05.507687
- Title: On the feasibility of performing quantum chemistry calculations on quantum computers
- Title(参考訳): 量子コンピュータにおける量子化学計算の実現可能性について
- Authors: Thibaud Louvet, Thomas Ayral, Xavier Waintal,
- Abstract要約: 分子の基底状態を見つけるための2つの主要な量子アプローチを評価するための2つの基準を提案する。
最初の基準は変分量子固有解法(VQE)アルゴリズムに適用される。
第2の基準は量子位相推定(QPE)アルゴリズムに適用される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Quantum chemistry is envisioned as an early and disruptive application for quantum computers. Yet, closer scrutiny of the proposed algorithms shows that there are considerable difficulties along the way. Here, we propose two criteria for evaluating two leading quantum approaches for finding the ground state of molecules. The first criterion applies to the variational quantum eigensolver (VQE) algorithm. It sets an upper bound to the level of imprecision/decoherence that can be tolerated in quantum hardware as a function of the targeted precision, the number of gates and the typical energy contribution from states populated by decoherence processes. We find that decoherence is highly detrimental to the accuracy of VQE and performing relevant chemistry calculations would require performances that are expected for fault-tolerant quantum computers, not mere noisy hardware, even with advanced error mitigation techniques. Physically, the sensitivity of VQE to decoherence originates from the fact that, in VQE, the spectrum of the studied molecule has no correlation with the spectrum of the quantum hardware used to perform the computation. The second criterion applies to the quantum phase estimation (QPE) algorithm, which is often presented as the go-to replacement of VQE upon availability of (noiseless) fault-tolerant quantum computers. QPE requires an input state with a large enough overlap with the sought-after ground state. We provide a criterion to estimate quantitatively this overlap based on the energy and the energy variance of said input state. Using input states from a variety of state-of-the-art classical methods, we show that the scaling of this overlap with system size does display the standard orthogonality catastrophe, namely an exponential suppression with system size. This in turns leads to an exponentially reduced QPE success probability.
- Abstract(参考訳): 量子化学は、量子コンピュータの早期かつ破壊的な応用として考えられている。
しかし、提案アルゴリズムのより綿密な精査は、その過程でかなりの困難があることを示している。
本稿では、分子の基底状態を見つけるための2つの主要な量子アプローチを評価するための2つの基準を提案する。
最初の基準は変分量子固有解法(VQE)アルゴリズムに適用される。
量子ハードウェアにおいて、目標精度、ゲートの数、およびデコヒーレンスプロセスに代表される状態からの典型的なエネルギー寄与の関数として許容できるインプレクション/デコヒーレンスレベルに上限を設定する。
VQEの精度にはデコヒーレンスが非常に有害であり、関連する化学計算を行うには、単なるノイズの多いハードウェアではなく、耐故障性量子コンピュータに期待される性能を必要とする。
物理的には、VQEの脱コヒーレンスに対する感度は、研究された分子のスペクトルが計算を実行するために使用される量子ハードウェアのスペクトルと相関しないという事実に由来する。
第2の基準は量子位相推定(QPE)アルゴリズムに適用され、(ノイズのない)フォールトトレラントな量子コンピュータが利用可能になると、VQEの代替としてしばしば提示される。
QPEは入力状態が必要であり、その入力状態は追従基底状態と十分に重なる。
入力状態のエネルギーとエネルギー分散に基づいて、この重なり合いを定量的に推定する基準を提供する。
様々な最先端の古典的手法からの入力状態を用いて、システムサイズとの重なり合いのスケーリングは、標準的な直交カタストロフィ、すなわちシステムサイズによる指数的抑制を示すことを示す。
この結果、指数的にQPE成功確率が低下する。
関連論文リスト
- Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
本稿では,古典計算機における量子化学の柱である結合クラスタ(CC)理論に基づく状態準備法を提案する。
提案手法は,従来の計算オーバーヘッドを低減し,CNOTおよびTゲートの数を平均で28%,57%削減する。
論文 参考訳(メタデータ) (2024-06-17T14:10:10Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
新しいQuantum Error Mitigation(QEM)技術では、Fizzy C-Meansクラスタリングを使用して測定エラーパターンを特定できる。
実 NISQ 5-qubit 量子プロセッサのサブセットとして得られた 2-qubit レジスタ上で,この手法の原理的検証を報告する。
我々は、FCMベースのQEM技術により、単一および2ビットゲートベースの量子回路の期待値が合理的に改善できることを実証した。
論文 参考訳(メタデータ) (2024-02-02T14:02:45Z) - Demonstrating Bayesian Quantum Phase Estimation with Quantum Error
Detection [0.5018156030818881]
我々は,Quantinuumトラップイオンコンピュータ上でQPEアルゴリズムを実証することにより,フォールトトレラント量子コンピューティングへの一歩を踏み出した。
単純な量子化学の例として、2量子ハミルトニアンで表される水素分子を取り、QPEプロトコルを用いて基底状態エネルギーを推定する。
論文 参考訳(メタデータ) (2023-06-29T00:22:07Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - Noise-robust ground state energy estimates from deep quantum circuits [0.0]
量子アルゴリズムにおいて、基礎となるエネルギー推定が不整合ノイズを明示的に除去する方法を示す。
我々はIBM Quantumハードウェア上で量子磁性のモデルとしてQCMを実装した。
QCMはVQEが完全に失敗する極めて高いエラー堅牢性を維持している。
論文 参考訳(メタデータ) (2022-11-16T09:12:55Z) - Error Mitigation-Aided Optimization of Parameterized Quantum Circuits:
Convergence Analysis [42.275148861039895]
変分量子アルゴリズム(VQA)は、ノイズプロセッサを介して量子アドバンテージを得るための最も有望な経路を提供する。
不完全性とデコヒーレンスによるゲートノイズは、バイアスを導入して勾配推定に影響を与える。
QEM(Quantum error mitigation)技術は、キュービット数の増加を必要とせずに、推定バイアスを低減することができる。
QEMは必要な反復回数を減らすことができるが、量子ノイズレベルが十分に小さい限りである。
論文 参考訳(メタデータ) (2022-09-23T10:48:04Z) - Quantum Computing Quantum Monte Carlo [8.69884453265578]
量子コンピューティングと量子モンテカルロを統合したハイブリッド量子古典アルゴリズムを提案する。
我々の研究は、中間スケールおよび早期フォールト耐性量子コンピュータで現実的な問題を解決するための道を開いた。
論文 参考訳(メタデータ) (2022-06-21T14:26:24Z) - Reducing the cost of energy estimation in the variational quantum
eigensolver algorithm with robust amplitude estimation [50.591267188664666]
量子化学と材料は、量子コンピューティングの最も有望な応用の1つである。
これらの領域における産業関連問題とそれを解決する量子アルゴリズムとの整合性については、まだ多くの研究が続けられている。
論文 参考訳(メタデータ) (2022-03-14T16:51:36Z) - Dequantizing the Quantum Singular Value Transformation: Hardness and
Applications to Quantum Chemistry and the Quantum PCP Conjecture [0.0]
量子特異値変換は効率的に「等化」できることを示す。
逆多項式精度では、同じ問題がBQP完全となることを示す。
また、この分位化手法が中心量子PCPの進展にどう役立つかについても論じる。
論文 参考訳(メタデータ) (2021-11-17T12:50:13Z) - Deep variational quantum eigensolver for excited states and its
application to quantum chemistry calculation of periodic materials [0.0]
変分量子固有解法(VQE)は、量子デバイスの計算能力を利用する最も有望な方法の1つである。
我々は、Deep VQEの当初の提案を拡張して励起状態を取得し、周期材料の量子化学計算に適用する。
論文 参考訳(メタデータ) (2021-04-02T02:19:30Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。