Atrial Septal Defect Detection in Children Based on Ultrasound Video
Using Multiple Instances Learning
- URL: http://arxiv.org/abs/2306.03835v1
- Date: Tue, 6 Jun 2023 16:25:29 GMT
- Title: Atrial Septal Defect Detection in Children Based on Ultrasound Video
Using Multiple Instances Learning
- Authors: Yiman Liu and Qiming Huang and Xiaoxiang Han and Tongtong Liang and
Zhifang Zhang and Lijun Chen and Jinfeng Wang and Angelos Stefanidis and
Jionglong Su and Jiangang Chen and Qingli Li and Yuqi Zhang
- Abstract summary: This paper aims to study a deep learning method based on cardiac ultrasound video to assist in atrial septal defect diagnosis.
We select two standard views of the atrial septum (subAS) and low parasternal four-compartment view (LPS4C) as the two views to identify ASD.
For ASD detection, we achieve 89.33 AUC, 84.95 accuracy, 85.70 sensitivity, 81.51 specificity and 81.99 F1 score.
- Score: 14.62565592495898
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purpose: Congenital heart defect (CHD) is the most common birth defect.
Thoracic echocardiography (TTE) can provide sufficient cardiac structure
information, evaluate hemodynamics and cardiac function, and is an effective
method for atrial septal defect (ASD) examination. This paper aims to study a
deep learning method based on cardiac ultrasound video to assist in ASD
diagnosis. Materials and methods: We select two standard views of the atrial
septum (subAS) and low parasternal four-compartment view (LPS4C) as the two
views to identify ASD. We enlist data from 300 children patients as part of a
double-blind experiment for five-fold cross-validation to verify the
performance of our model. In addition, data from 30 children patients (15
positives and 15 negatives) are collected for clinician testing and compared to
our model test results (these 30 samples do not participate in model training).
We propose an echocardiography video-based atrial septal defect diagnosis
system. In our model, we present a block random selection, maximal agreement
decision and frame sampling strategy for training and testing respectively,
resNet18 and r3D networks are used to extract the frame features and aggregate
them to build a rich video-level representation. Results: We validate our model
using our private dataset by five-cross validation. For ASD detection, we
achieve 89.33 AUC, 84.95 accuracy, 85.70 sensitivity, 81.51 specificity and
81.99 F1 score. Conclusion: The proposed model is multiple instances
learning-based deep learning model for video atrial septal defect detection
which effectively improves ASD detection accuracy when compared to the
performances of previous networks and clinical doctors.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Automated interpretation of congenital heart disease from multi-view
echocardiograms [10.238433789459624]
Congenital heart disease (CHD) is the most common birth defect and the leading cause of neonate death in China.
This study proposes to automatically analyze the multi-view echocardiograms with a practical end-to-end framework.
arXiv Detail & Related papers (2023-11-30T18:37:21Z) - Outlier-based Autism Detection using Longitudinal Structural MRI [6.311381904410801]
This paper proposes structural Magnetic Resonance Imaging (sMRI)-based Autism Spectrum Disorder diagnosis via an outlier detection approach.
Generative Adversarial Network (GAN) is trained exclusively with sMRI scans of healthy subjects.
Experiments reveal that our ASD detection framework performs comparably with the state-of-the-art with far fewer training data.
arXiv Detail & Related papers (2022-02-21T04:37:25Z) - 3D Structural Analysis of the Optic Nerve Head to Robustly Discriminate
Between Papilledema and Optic Disc Drusen [44.754910718620295]
We developed a deep learning algorithm to identify major tissue structures of the optic nerve head (ONH) in 3D optical coherence tomography ( OCT) scans.
A classification algorithm was designed using 150 OCT volumes to perform 3-class classifications (1: ODD, 2: papilledema, 3: healthy) strictly from their drusen and prelamina swelling scores.
Our AI approach accurately discriminated ODD from papilledema, using a single OCT scan.
arXiv Detail & Related papers (2021-12-18T17:05:53Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
We launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the AI model can be distributedly trained and independently executed at each host institution.
Our study is based on 9,573 chest computed tomography scans (CTs) from 3,336 patients collected from 23 hospitals located in China and the UK.
arXiv Detail & Related papers (2021-11-18T00:43:41Z) - An Automatic Detection Method Of Cerebral Aneurysms In Time-Of-Flight
Magnetic Resonance Angiography Images Based On Attention 3D U-Net [17.556541347902638]
Subarachnoid hemorrhage caused by ruptured cerebral aneurysm often leads to fatal consequences.
Time-of-flight magnetic resonance angiography is one of the most commonly used non-invasive screening techniques for cerebral aneurysm.
The application of deep learning technology in aneurysm detection can effectively improve the screening effect of aneurysm.
arXiv Detail & Related papers (2021-10-26T02:45:15Z) - A proof of concept study for machine learning application to stenosis
detection [0.0]
A virtual patient database (VPD) is created using one-dimensional pulse wave propagation model of haemodynamics.
Four different machine learning (ML) methods are used to train and test a series of classifiers.
arXiv Detail & Related papers (2021-02-11T19:39:33Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - CT-based COVID-19 Triage: Deep Multitask Learning Improves Joint
Identification and Severity Quantification [45.86448200141968]
We describe two basic setups: Identification of COVID-19 to prioritize studies of potentially infected patients to isolate them as early as possible; Severity quantification to highlight studies of severe patients and direct them to a hospital or provide emergency medical care.
We propose a multitask approach to consolidate both triage approaches and propose a convolutional neural network to combine all available labels within a single model.
We train our model on approximately 2000 publicly available CT studies and test it with a carefully designed set consisting of 32 COVID-19 studies, 30 cases with bacterial pneumonia, 31 healthy patients, and 30 patients with other lung pathologies to emulate a typical patient flow in
arXiv Detail & Related papers (2020-06-02T08:05:06Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - Deep Learning Based Detection and Localization of Intracranial Aneurysms
in Computed Tomography Angiography [5.973882600944421]
A two-step model was implemented: a 3D region proposal network for initial aneurysm detection and 3D DenseNetsfor false-positive reduction.
Our model showed statistically higher accuracy, sensitivity, and specificity when compared to the available model at 0.25 FPPV and the best F-1 score.
arXiv Detail & Related papers (2020-05-22T10:49:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.