Automated interpretation of congenital heart disease from multi-view
echocardiograms
- URL: http://arxiv.org/abs/2311.18788v1
- Date: Thu, 30 Nov 2023 18:37:21 GMT
- Title: Automated interpretation of congenital heart disease from multi-view
echocardiograms
- Authors: Jing Wang, Xiaofeng Liu, Fangyun Wang, Lin Zheng, Fengqiao Gao, Hanwen
Zhang, Xin Zhang, Wanqing Xie, Binbin Wang
- Abstract summary: Congenital heart disease (CHD) is the most common birth defect and the leading cause of neonate death in China.
This study proposes to automatically analyze the multi-view echocardiograms with a practical end-to-end framework.
- Score: 10.238433789459624
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Congenital heart disease (CHD) is the most common birth defect and the
leading cause of neonate death in China. Clinical diagnosis can be based on the
selected 2D key-frames from five views. Limited by the availability of
multi-view data, most methods have to rely on the insufficient single view
analysis. This study proposes to automatically analyze the multi-view
echocardiograms with a practical end-to-end framework. We collect the five-view
echocardiograms video records of 1308 subjects (including normal controls,
ventricular septal defect (VSD) patients and atrial septal defect (ASD)
patients) with both disease labels and standard-view key-frame labels.
Depthwise separable convolution-based multi-channel networks are adopted to
largely reduce the network parameters. We also approach the imbalanced class
problem by augmenting the positive training samples. Our 2D key-frame model can
diagnose CHD or negative samples with an accuracy of 95.4\%, and in negative,
VSD or ASD classification with an accuracy of 92.3\%. To further alleviate the
work of key-frame selection in real-world implementation, we propose an
adaptive soft attention scheme to directly explore the raw video data. Four
kinds of neural aggregation methods are systematically investigated to fuse the
information of an arbitrary number of frames in a video. Moreover, with a view
detection module, the system can work without the view records. Our video-based
model can diagnose with an accuracy of 93.9\% (binary classification), and
92.1\% (3-class classification) in a collected 2D video testing set, which does
not need key-frame selection and view annotation in testing. The detailed
ablation study and the interpretability analysis are provided.
Related papers
- Reliable Multi-View Learning with Conformal Prediction for Aortic Stenosis Classification in Echocardiography [6.540741143328299]
The acquired images are often 2-D cross-sections of a 3-D anatomy, potentially missing important anatomical details.
We propose Re-Training for Uncertainty (RT4U), a data-centric method to introduce uncertainty to weakly informative inputs in the training set.
When combined with conformal prediction techniques, RT4U can yield adaptively sized prediction sets which are guaranteed to contain the ground truth class to a high accuracy.
arXiv Detail & Related papers (2024-09-15T10:06:06Z) - Atrial Septal Defect Detection in Children Based on Ultrasound Video
Using Multiple Instances Learning [14.62565592495898]
This paper aims to study a deep learning method based on cardiac ultrasound video to assist in atrial septal defect diagnosis.
We select two standard views of the atrial septum (subAS) and low parasternal four-compartment view (LPS4C) as the two views to identify ASD.
For ASD detection, we achieve 89.33 AUC, 84.95 accuracy, 85.70 sensitivity, 81.51 specificity and 81.99 F1 score.
arXiv Detail & Related papers (2023-06-06T16:25:29Z) - Zero-shot Model Diagnosis [80.36063332820568]
A common approach to evaluate deep learning models is to build a labeled test set with attributes of interest and assess how well it performs.
This paper argues the case that Zero-shot Model Diagnosis (ZOOM) is possible without the need for a test set nor labeling.
arXiv Detail & Related papers (2023-03-27T17:59:33Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
Unsupervised anomaly detection (UAD) can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples.
This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA)
The proposed pipeline achieved a Dice score of 0.642$pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$pm$0.112 while detecting artificially induced anomalies.
arXiv Detail & Related papers (2022-01-31T14:27:35Z) - Learning from Subjective Ratings Using Auto-Decoded Deep Latent
Embeddings [23.777855250882244]
Managing subjectivity in labels is a fundamental problem in medical imaging analysis.
We introduce auto-decoded deep latent embeddings (ADDLE)
ADDLE explicitly models the tendencies of each rater using an auto-decoder framework.
arXiv Detail & Related papers (2021-04-12T15:40:42Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - PS-DeVCEM: Pathology-sensitive deep learning model for video capsule
endoscopy based on weakly labeled data [0.0]
We propose a pathology-sensitive deep learning model (PS-DeVCEM) for frame-level anomaly detection and multi-label classification of different colon diseases in video capsule endoscopy (VCE) data.
Our model is driven by attention-based deep multiple instance learning and is trained end-to-end on weakly labeled data.
We show our model's ability to temporally localize frames with pathologies, without frame annotation information during training.
arXiv Detail & Related papers (2020-11-22T15:33:37Z) - Convolutional-LSTM for Multi-Image to Single Output Medical Prediction [55.41644538483948]
A common scenario in developing countries is to have the volume metadata lost due multiple reasons.
It is possible to get a multi-image to single diagnostic model which mimics human doctor diagnostic process.
arXiv Detail & Related papers (2020-10-20T04:30:09Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z) - CNN-CASS: CNN for Classification of Coronary Artery Stenosis Score in
MPR Images [0.0]
We develop an automated model to identify stenosis severity in MPR images.
The model predicts one of three classes: 'no stenosis' for normal, 'non-significant' - 1-50% of stenosis detected,'significant' - more than 50% of stenosis.
For stenosis score classification, the method shows improved performance comparing to previous works, achieving 80% accuracy on the patient level.
arXiv Detail & Related papers (2020-01-23T15:20:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.