Modified quantum regression theorem and consistency with
Kubo-Martin-Schwinger condition
- URL: http://arxiv.org/abs/2306.04677v1
- Date: Wed, 7 Jun 2023 18:00:01 GMT
- Title: Modified quantum regression theorem and consistency with
Kubo-Martin-Schwinger condition
- Authors: Sakil Khan, Bijay Kumar Agarwalla, and Sachin Jain
- Abstract summary: We show that the long-time limit of the two-point correlation function obtained via the standard quantum regression theorem does not respect the Kubo-Martin-Schwinger equilibrium condition.
We derive a new modified version of the quantum regression theorem that not only respects the KMS condition but further predicts exact answers for certain paradigmatic models in specific limits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We show that the long-time limit of the two-point correlation function
obtained via the standard quantum regression theorem, a standard tool to
compute correlation functions in open quantum systems, does not respect the
Kubo-Martin-Schwinger equilibrium condition to the non-zero order of the
system-bath coupling. We then follow the recently developed Heisenberg operator
method for open quantum systems and by applying a ``{\it weak}" Markov
approximation, derive a new modified version of the quantum regression theorem
that not only respects the KMS condition but further predicts exact answers for
certain paradigmatic models in specific limits. We also show that in cases
where the modified quantum regression theorem does not match with exact
answers, it always performs better than the standard quantum regression
theorem.
Related papers
- Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Canonically consistent quantum master equation [68.8204255655161]
We put forth a new class of quantum master equations that correctly reproduce the state of an open quantum system beyond the infinitesimally weak system-bath coupling limit.
Our method is based on incorporating the knowledge of the reduced steady state into its dynamics.
arXiv Detail & Related papers (2022-05-25T15:22:52Z) - Minimum-Time Quantum Control and the Quantum Brachistochrone Equation [3.0616044531734192]
We present the general solution to the full quantum brachistochrone equation.
We prove that the speed of evolution under constraints is reduced with respect to the unrestricted case.
We find that solving the quantum brachistochrone equation is closely connected to solving the dynamics of the Lagrange multipliers.
arXiv Detail & Related papers (2022-04-27T09:26:59Z) - Quantum nonreciprocal interactions via dissipative gauge symmetry [18.218574433422535]
One-way nonreciprocal interactions between two quantum systems are typically described by a cascaded quantum master equation.
We present a new approach for obtaining nonreciprocal quantum interactions that is completely distinct from cascaded quantum systems.
arXiv Detail & Related papers (2022-03-17T15:34:40Z) - Quantum Computation Using Action Variables [4.087043981909747]
We argue quantum computation using action variables as fault-tolerant quantum computation, whose fault-tolerance is guaranteed by the quantum KAM theorem.
Besides, we view the Birkhoff norm form as a mathematical framework of the extended harmonic oscillator quantum computation.
arXiv Detail & Related papers (2021-09-24T12:04:27Z) - Universal quantum computation and quantum error correction using
discrete holonomies [0.0]
Holonomic quantum computation exploits a quantum state's non-trivial, matrix-valued geometric phase (holonomy) to perform fault-tolerant computation.
We show that quantum error correction codes integrate naturally in our scheme, providing a model for measurement-based quantum computation.
arXiv Detail & Related papers (2021-09-08T14:55:17Z) - Assessing Relational Quantum Mechanics [0.0]
Quantum Mechanics (RQM) is an interpretation of quantum theory based on the idea of abolishing the notion of absolute states of systems.
We find that RQM fails to address the conceptual problems of standard quantum mechanics--related to the lack of clarity in its behavior.
We conclude that RQM is unsuccessful in its attempt to provide a satisfactory understanding of the quantum world.
arXiv Detail & Related papers (2021-05-27T17:47:28Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.