論文の概要: Exploiting Observation Bias to Improve Matrix Completion
- arxiv url: http://arxiv.org/abs/2306.04775v1
- Date: Wed, 7 Jun 2023 20:48:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-09 17:31:25.853339
- Title: Exploiting Observation Bias to Improve Matrix Completion
- Title(参考訳): マトリックスの完成度向上のための爆発観測バイアス
- Authors: Sean Mann, Charlotte Park, Devavrat Shah
- Abstract要約: 本稿では,行列補完の変種について考察する。
私たちのゴールは、バイアスと関心の結果の間の共有情報を利用して予測を改善することです。
- 参考スコア(独自算出の注目度): 12.590415345079991
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a variant of matrix completion where entries are revealed in a
biased manner, adopting a model akin to that introduced by Ma and Chen. Instead
of treating this observation bias as a disadvantage, as is typically the case,
our goal is to exploit the shared information between the bias and the outcome
of interest to improve predictions. Towards this, we propose a simple two-stage
algorithm: (i) interpreting the observation pattern as a fully observed noisy
matrix, we apply traditional matrix completion methods to the observation
pattern to estimate the distances between the latent factors; (ii) we apply
supervised learning on the recovered features to impute missing observations.
We establish finite-sample error rates that are competitive with the
corresponding supervised learning parametric rates, suggesting that our
learning performance is comparable to having access to the unobserved
covariates. Empirical evaluation using a real-world dataset reflects similar
performance gains, with our algorithm's estimates having 30x smaller mean
squared error compared to traditional matrix completion methods.
- Abstract(参考訳): 本稿では,Ma と Chen が導入したモデルに類似したモデルを用いて,入出力をバイアス的に明らかにする行列補完の変種を考える。
一般的にそうであるように、この観察バイアスを不利として扱う代わりに、私たちの目標は、バイアスと関心の結果の間の共有情報を利用して予測を改善することです。
これに対し,我々は単純な二段階アルゴリズムを提案する。
(i) 観測パターンを完全に観測された雑音行列と解釈し、従来の行列補完法を観測パターンに適用し、潜在要因間の距離を推定する。
(II) 得られた特徴を教師あり学習に応用し, 行方不明な観察を示唆する。
我々は,教師付き学習パラメトリックレートと競合する有限サンプル誤差率を確立し,観察されていない共変量へのアクセスに匹敵する学習性能を示唆する。
実世界のデータセットを用いた経験的評価は、従来の行列補完法に比べて平均2乗誤差が30倍小さいという、類似のパフォーマンス向上を反映している。
関連論文リスト
- MANO: Exploiting Matrix Norm for Unsupervised Accuracy Estimation Under Distribution Shifts [25.643876327918544]
モデルのアウトプット、特にロジットを活用することは、トレーニング済みニューラルネットワークのテスト精度を、アウト・オブ・ディストリビューションのサンプルで推定する一般的なアプローチである。
実装の容易さと計算効率にもかかわらず、現在のロジットベースの手法は過信問題に弱いため、予測バイアスにつながる。
予測バイアスを低減するためにデータ依存正規化を適用したMaNoを提案し,正規化ロジットの行列の$L_p$ノルムを推定スコアとする。
論文 参考訳(メタデータ) (2024-05-29T10:45:06Z) - Approximating Counterfactual Bounds while Fusing Observational, Biased
and Randomised Data Sources [64.96984404868411]
我々は、複数の、偏見のある、観察的、介入的な研究からのデータを統合するという問題に対処する。
利用可能なデータの可能性は局所的な最大値を持たないことを示す。
次に、同じアプローチが複数のデータセットの一般的なケースにどのように対処できるかを示す。
論文 参考訳(メタデータ) (2023-07-31T11:28:24Z) - A Generalized Latent Factor Model Approach to Mixed-data Matrix
Completion with Entrywise Consistency [3.299672391663527]
マトリックスコンプリート(Matrix completion)は、部分的に観察された行列における欠落したエントリの予測に関する機械学習手法のクラスである。
非線型因子モデルの一般族の下での低ランク行列推定問題として定式化する。
低ランク行列を推定するためのエントリーワイドな一貫した推定器を提案する。
論文 参考訳(メタデータ) (2022-11-17T00:24:47Z) - Instance-Dependent Label-Noise Learning with Manifold-Regularized
Transition Matrix Estimation [172.81824511381984]
遷移行列 T(x) は、インスタンス依存ノイズ(IDN)の下では特定できない
我々は、T(x) の幾何学について、「より近い2つのインスタンスは、それに対応する遷移行列がより類似している」という仮定を提案する。
本手法は,難解なIDNの下でのラベルノイズ学習において,最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2022-06-06T04:12:01Z) - Coordinated Double Machine Learning [8.808993671472349]
本稿では、ディープニューラルネットワークのための注意深く調整された学習アルゴリズムにより、推定バイアスを低減できると主張している。
シミュレーションデータと実データの両方を用いた数値実験により,提案手法の実証性能が向上したことを示す。
論文 参考訳(メタデータ) (2022-06-02T05:56:21Z) - Generalization bounds and algorithms for estimating conditional average
treatment effect of dosage [13.867315751451494]
本研究では,治療薬対の条件付き平均因果効果を観測データと仮定の組み合わせで推定する作業について検討した。
これは疫学や経済学など、意思決定のために治療薬対を必要とする分野における長年にわたる課題である。
この問題に対するいくつかのベンチマークデータセットに対して、実証的に新しい最先端のパフォーマンス結果を示す。
論文 参考訳(メタデータ) (2022-05-29T15:26:59Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
因果構造学習への現在のアプローチは、既知の介入目標を扱うか、仮説テストを使用して未知の介入目標を発見する。
本稿では、全ての介入対象を一貫して識別するスケーラブルで効率的なアルゴリズムを提案する。
提案アルゴリズムは、与えられた観測マルコフ同値クラスを介入マルコフ同値クラスに更新することも可能である。
論文 参考訳(メタデータ) (2021-11-15T03:16:56Z) - Riemannian classification of EEG signals with missing values [67.90148548467762]
本稿では脳波の分類に欠落したデータを扱うための2つの方法を提案する。
第1のアプローチでは、インプットされたデータと$k$-nearestの隣人アルゴリズムとの共分散を推定し、第2のアプローチでは、期待最大化アルゴリズム内で観測データの可能性を活用することにより、観測データに依存する。
その結果, 提案手法は観測データに基づく分類よりも優れており, 欠落したデータ比が増大しても高い精度を維持することができることがわかった。
論文 参考訳(メタデータ) (2021-10-19T14:24:50Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
深層学習モデルは、予測的手がかりとして学習すべきでない急激な相関を学習する傾向がある。
本研究では,観測可能な共同設立者による相関関係の緩和を目的とした因果関係に基づくトレーニングフレームワークを提案する。
自然言語推論(NLI)と画像キャプションという2つの実世界の課題について実験を行った。
論文 参考訳(メタデータ) (2021-06-07T17:47:16Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z) - Estimating Treatment Effects with Observed Confounders and Mediators [25.338901482522648]
因果グラフが与えられた場合、do-calculusは経験的に推定できる観察関節分布の関数として治療効果を表現することができる。
時折、do-calculusは複数の有効な公式を識別し、対応する推定器の統計特性を比較するように促す。
本稿では,共同創設者と仲介者の両方が観察される過度に同定されたシナリオについて検討し,両推定手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-03-26T15:50:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。